Improper permission check in ZooKeeper AdminServer lets authorized clients to run snapshot and restore command with insufficient permissions.
This issue affects Apache ZooKeeper: from 3.9.0 before 3.9.4.
Users are recommended to upgrade to version 3.9.4, which fixes the issue.
The issue can be mitigated by disabling both commands (via admin.snapshot.enabled and admin.restore.enabled), disabling the whole AdminServer interface (via admin.enableServer), or ensuring that the root ACL does not provide open permissions. (Note that ZooKeeper ACLs are not recursive, so this does not impact operations on child nodes besides notifications from recursive watches.)
Deserialization of Untrusted Data vulnerability in Apache IoTDB.
This issue affects Apache IoTDB: from 1.0.0 before 2.0.5.
Users are recommended to upgrade to version 2.0.5, which fixes the issue.
A Insufficient Session Expiration vulnerability in the Liferay Portal 7.4.3.121 through 7.3.3.131, and Liferay DXP 2024.Q4.0 through 2024.Q4.3, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, and 2024.Q1.1 through 2024.Q1.12 is allow an remote non-authenticated attacker to reuse old user session by SLO API
A reflected cross-site scripting (XSS) vulnerability in the Liferay Portal 7.4.0 through 7.4.3.112, and Liferay DXP 2024.Q1.1 through 2024.Q1.18 and 7.4 GA through update 92 allows a remote authenticated attacker to inject JavaScript code via _com_liferay_commerce_product_definitions_web_internal_portlet_CPDefinitionsPortlet_productTypeName parameter. This malicious payload is then reflected and executed within the user's browser.
In Shenzhen C-Data Technology Co. FD602GW-DX-R410 (firmware v2.2.14), the web management interface contains an authenticated CSRF vulnerability on the reboot endpoint (/boaform/admin/formReboot). An attacker can craft a malicious webpage that, when visited by an authenticated administrator, causes the router to reboot without explicit user consent. This lack of CSRF protection on a sensitive administrative function can lead to denial of service by disrupting network availability.
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in WordPress allows Stored XSS. WordPress core security team is aware of the issue and working on a fix. This is low severity vulnerability that requires an attacker to have Author or higher user privileges to execute the attack vector.This issue affects WordPress: from 6.8 through 6.8.2, from 6.7 through 6.7.3, from 6.6 through 6.6.3, from 6.5 through 6.5.6, from 6.4 through 6.4.6, from 6.3 through 6.3.6, from 6.2 through 6.2.7, from 6.1 through 6.1.8, from 6.0 through 6.0.10, from 5.9 through 5.9.11, from 5.8 through 5.8.11, from 5.7 through 5.7.13, from 5.6 through 5.6.15, from 5.5 through 5.5.16, from 5.4 through 5.4.17, from 5.3 through 5.3.19, from 5.2 through 5.2.22, from 5.1 through 5.1.20, from 5.0 through 5.0.23, from 4.9 through 4.9.27, from 4.8 through 4.8.26, from 4.7 through 4.7.30.
Sunshine is a self-hosted game stream host for Moonlight. Prior to version 2025.923.33222, the Windows service SunshineService is installed with an unquoted executable path. If Sunshine is installed in a directory whose name includes a space, the Service Control Manager (SCM) interprets the path incrementally and may execute a malicious binary placed earlier in the search string. This issue has been patched in version 2025.923.33222.
Insertion of Sensitive Information Into Sent Data vulnerability in WordPress allows Retrieve Embedded Sensitive Data. The WordPress Core security team is aware of the issue and is already working on a fix. This is a low-severity vulnerability. Contributor-level privileges required in order to exploit it.
This issue affects WordPress: from 6.8 through 6.8.2, from 6.7 through 6.7.3, from 6.6 through 6.6.3, from 6.5 through 6.5.6, from 6.4 through 6.4.6, from 6.3 through 6.3.6, from 6.2 through 6.2.7, from 6.1 through 6.1.8, from 6.0 through 6.0.10, from 5.9 through 5.9.11, from 5.8 through 5.8.11, from 5.7 through 5.7.13, from 5.6 through 5.6.15, from 5.5 through 5.5.16, from 5.4 through 5.4.17, from 5.3 through 5.3.19, from 5.2 through 5.2.22, from 5.1 through 5.1.20, from 5.0 through 5.0.23, from 4.9 through 4.9.27, from 4.8 through 4.8.26, from 4.7 through 4.7.30.
A reflected cross-site scripting (XSS) vulnerability exists in the account registration flow of WSO2 Identity Server due to improper output encoding. A malicious actor can exploit this vulnerability by injecting a crafted payload that is reflected in the server response, enabling the execution of arbitrary JavaScript in the victim's browser.
This vulnerability could allow attackers to redirect users to malicious websites, modify the user interface, or exfiltrate data from the browser. However, session-related sensitive cookies are protected using the httpOnly flag, which mitigates the risk of session hijacking.
A cross-tenant authentication vulnerability exists in multiple WSO2 products due to improper cryptographic design in Adaptive Authentication. A single cryptographic key is used across all tenants to sign authentication cookies, allowing a privileged user in one tenant to forge authentication cookies for users in other tenants.
Because the Auto-Login feature is enabled by default, this flaw may allow an attacker to gain unauthorized access and potentially take over accounts in other tenants. Successful exploitation requires access to Adaptive Authentication functionality, which is typically restricted to high-privileged users. The vulnerability is only exploitable when Auto-Login is enabled, reducing its practical impact in deployments where the feature is disabled.
A content spoofing vulnerability exists in multiple WSO2 products due to improper error message handling. Under certain conditions, error messages are passed through URL parameters without validation, allowing malicious actors to inject arbitrary content into the UI.
By exploiting this vulnerability, attackers can manipulate browser-displayed error messages, enabling social engineering attacks through deceptive or misleading content.
An authenticated remote code execution (RCE) vulnerability exists in multiple WSO2 products due to improper input validation in the event processor admin service. A user with administrative access to the SOAP admin services can exploit this flaw by deploying a Siddhi execution plan containing malicious Java code, resulting in arbitrary code execution on the server.
Exploitation of this vulnerability requires a valid user account with administrative privileges, limiting the attack surface to authenticated but potentially malicious users.
A stored cross-site scripting (XSS) vulnerability in the Admin Log Viewer of S-Cart <=10.0.3 allows a remote authenticated attacker to inject arbitrary web script or HTML via a crafted User-Agent header. The script is executed in an administrator's browser when they view the security log page, which could lead to session hijacking or other malicious actions.
An authenticated stored cross-site scripting (XSS) vulnerability exists in multiple WSO2 products due to improper validation of user-supplied input during API document upload in the Publisher portal. A user with publisher privileges can upload a crafted API document containing malicious JavaScript, which is later rendered in the browser when accessed by other users.
A successful attack could result in redirection to malicious websites, unauthorized UI modifications, or exfiltration of browser-accessible data. However, session-related sensitive cookies are protected by the httpOnly flag, preventing session hijacking.
An information disclosure vulnerability exists in multiple WSO2 products due to improper implementation of the enrich mediator. Authenticated users may be able to view unintended business data from other mediation contexts because the internal state is not properly isolated or cleared between executions.
This vulnerability does not impact user credentials or access tokens but may lead to leakage of sensitive business information handled during message flows.
danny-avila/librechat is affected by an authorization bypass vulnerability due to improper access control checks. The `checkAccess` function in `api/server/middleware/roles/access.js` uses `permissions.some()` to validate permissions, which incorrectly grants access if only one of multiple required permissions is present. This allows users with the 'USER' role to create agents despite having `CREATE: false` permission, as the check for `['USE', 'CREATE']` passes with just `USE: true`. This vulnerability affects other permission checks as well, such as `PROMPTS`. The issue is present in all versions prior to the fix.
A vulnerability was determined in Portabilis i-Educar up to 2.10. This vulnerability affects unknown code of the file /module/ComponenteCurricular/edit. This manipulation of the argument ID causes sql injection. The attack is possible to be carried out remotely. The exploit has been publicly disclosed and may be utilized.
A vulnerability was found in Portabilis i-Educar up to 2.10. This affects an unknown part of the file /module/ComponenteCurricular/view. The manipulation of the argument ID results in sql injection. The attack can be executed remotely. The exploit has been made public and could be used.
A vulnerability has been found in Portabilis i-Educar up to 2.10. Affected by this issue is some unknown functionality of the file /module/Cadastro/aluno. The manipulation of the argument is leads to sql injection. Remote exploitation of the attack is possible. The exploit has been disclosed to the public and may be used.
The CleverControl employee monitoring software (v11.5.1041.6) fails to validate TLS server certificates during the installation process. The installer downloads and executes external components using curl.exe --insecure, enabling a man-in-the-middle attacker to deliver malicious files that are executed with SYSTEM privileges. This can lead to full remote code execution with administrative rights. No patch is available as the vendor has been unresponsive. It is assumed that previous versions are also affected, but this is not confirmed.
In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix null-ptr-deref in bitmap_parselist()
A crash was observed with the following output:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 92 Comm: osnoise_cpus Not tainted 6.17.0-rc4-00201-gd69eb204c255 #138 PREEMPT(voluntary)
RIP: 0010:bitmap_parselist+0x53/0x3e0
Call Trace:
<TASK>
osnoise_cpus_write+0x7a/0x190
vfs_write+0xf8/0x410
? do_sys_openat2+0x88/0xd0
ksys_write+0x60/0xd0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This issue can be reproduced by below code:
fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY);
write(fd, "0-2", 0);
When user pass 'count=0' to osnoise_cpus_write(), kmalloc() will return
ZERO_SIZE_PTR (16) and cpulist_parse() treat it as a normal value, which
trigger the null pointer dereference. Add check for the parameter 'count'.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Tell memcg to use allow_spinning=false path in bpf_timer_init()
Currently, calling bpf_map_kmalloc_node() from __bpf_async_init() can
cause various locking issues; see the following stack trace (edited for
style) as one example:
...
[10.011566] do_raw_spin_lock.cold
[10.011570] try_to_wake_up (5) double-acquiring the same
[10.011575] kick_pool rq_lock, causing a hardlockup
[10.011579] __queue_work
[10.011582] queue_work_on
[10.011585] kernfs_notify
[10.011589] cgroup_file_notify
[10.011593] try_charge_memcg (4) memcg accounting raises an
[10.011597] obj_cgroup_charge_pages MEMCG_MAX event
[10.011599] obj_cgroup_charge_account
[10.011600] __memcg_slab_post_alloc_hook
[10.011603] __kmalloc_node_noprof
...
[10.011611] bpf_map_kmalloc_node
[10.011612] __bpf_async_init
[10.011615] bpf_timer_init (3) BPF calls bpf_timer_init()
[10.011617] bpf_prog_xxxxxxxxxxxxxxxx_fcg_runnable
[10.011619] bpf__sched_ext_ops_runnable
[10.011620] enqueue_task_scx (2) BPF runs with rq_lock held
[10.011622] enqueue_task
[10.011626] ttwu_do_activate
[10.011629] sched_ttwu_pending (1) grabs rq_lock
...
The above was reproduced on bpf-next (b338cf849ec8) by modifying
./tools/sched_ext/scx_flatcg.bpf.c to call bpf_timer_init() during
ops.runnable(), and hacking the memcg accounting code a bit to make
a bpf_timer_init() call more likely to raise an MEMCG_MAX event.
We have also run into other similar variants (both internally and on
bpf-next), including double-acquiring cgroup_file_kn_lock, the same
worker_pool::lock, etc.
As suggested by Shakeel, fix this by using __GFP_HIGH instead of
GFP_ATOMIC in __bpf_async_init(), so that e.g. if try_charge_memcg()
raises an MEMCG_MAX event, we call __memcg_memory_event() with
@allow_spinning=false and avoid calling cgroup_file_notify() there.
Depends on mm patch
"memcg: skip cgroup_file_notify if spinning is not allowed":
https://lore.kernel.org/bpf/20250905201606.66198-1-shakeel.butt@linux.dev/
v0 approach s/bpf_map_kmalloc_node/bpf_mem_alloc/
https://lore.kernel.org/bpf/20250905061919.439648-1-yepeilin@google.com/
v1 approach:
https://lore.kernel.org/bpf/20250905234547.862249-1-yepeilin@google.com/
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix subvolume deletion lockup caused by inodes xarray race
There is a race condition between inode eviction and inode caching that
can cause a live struct btrfs_inode to be missing from the root->inodes
xarray. Specifically, there is a window during evict() between the inode
being unhashed and deleted from the xarray. If btrfs_iget() is called
for the same inode in that window, it will be recreated and inserted
into the xarray, but then eviction will delete the new entry, leaving
nothing in the xarray:
Thread 1 Thread 2
---------------------------------------------------------------
evict()
remove_inode_hash()
btrfs_iget_path()
btrfs_iget_locked()
btrfs_read_locked_inode()
btrfs_add_inode_to_root()
destroy_inode()
btrfs_destroy_inode()
btrfs_del_inode_from_root()
__xa_erase
In turn, this can cause issues for subvolume deletion. Specifically, if
an inode is in this lost state, and all other inodes are evicted, then
btrfs_del_inode_from_root() will call btrfs_add_dead_root() prematurely.
If the lost inode has a delayed_node attached to it, then when
btrfs_clean_one_deleted_snapshot() calls btrfs_kill_all_delayed_nodes(),
it will loop forever because the delayed_nodes xarray will never become
empty (unless memory pressure forces the inode out). We saw this
manifest as soft lockups in production.
Fix it by only deleting the xarray entry if it matches the given inode
(using __xa_cmpxchg()).
In the Linux kernel, the following vulnerability has been resolved:
ceph: always call ceph_shift_unused_folios_left()
The function ceph_process_folio_batch() sets folio_batch entries to
NULL, which is an illegal state. Before folio_batch_release() crashes
due to this API violation, the function ceph_shift_unused_folios_left()
is supposed to remove those NULLs from the array.
However, since commit ce80b76dd327 ("ceph: introduce
ceph_process_folio_batch() method"), this shifting doesn't happen
anymore because the "for" loop got moved to ceph_process_folio_batch(),
and now the `i` variable that remains in ceph_writepages_start()
doesn't get incremented anymore, making the shifting effectively
unreachable much of the time.
Later, commit 1551ec61dc55 ("ceph: introduce ceph_submit_write()
method") added more preconditions for doing the shift, replacing the
`i` check (with something that is still just as broken):
- if ceph_process_folio_batch() fails, shifting never happens
- if ceph_move_dirty_page_in_page_array() was never called (because
ceph_process_folio_batch() has returned early for some of various
reasons), shifting never happens
- if `processed_in_fbatch` is zero (because ceph_process_folio_batch()
has returned early for some of the reasons mentioned above or
because ceph_move_dirty_page_in_page_array() has failed), shifting
never happens
Since those two commits, any problem in ceph_process_folio_batch()
could crash the kernel, e.g. this way:
BUG: kernel NULL pointer dereference, address: 0000000000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: Oops: 0002 [#1] SMP NOPTI
CPU: 172 UID: 0 PID: 2342707 Comm: kworker/u778:8 Not tainted 6.15.10-cm4all1-es #714 NONE
Hardware name: Dell Inc. PowerEdge R7615/0G9DHV, BIOS 1.6.10 12/08/2023
Workqueue: writeback wb_workfn (flush-ceph-1)
RIP: 0010:folios_put_refs+0x85/0x140
Code: 83 c5 01 39 e8 7e 76 48 63 c5 49 8b 5c c4 08 b8 01 00 00 00 4d 85 ed 74 05 41 8b 44 ad 00 48 8b 15 b0 >
RSP: 0018:ffffb880af8db778 EFLAGS: 00010207
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000003
RDX: ffffe377cc3b0000 RSI: 0000000000000000 RDI: ffffb880af8db8c0
RBP: 0000000000000000 R08: 000000000000007d R09: 000000000102b86f
R10: 0000000000000001 R11: 00000000000000ac R12: ffffb880af8db8c0
R13: 0000000000000000 R14: 0000000000000000 R15: ffff9bd262c97000
FS: 0000000000000000(0000) GS:ffff9c8efc303000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000034 CR3: 0000000160958004 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<TASK>
ceph_writepages_start+0xeb9/0x1410
The crash can be reproduced easily by changing the
ceph_check_page_before_write() return value to `-E2BIG`.
(Interestingly, the crash happens only if `huge_zero_folio` has
already been allocated; without `huge_zero_folio`,
is_huge_zero_folio(NULL) returns true and folios_put_refs() skips NULL
entries instead of dereferencing them. That makes reproducing the bug
somewhat unreliable. See
https://lore.kernel.org/20250826231626.218675-1-max.kellermann@ionos.com
for a discussion of this detail.)
My suggestion is to move the ceph_shift_unused_folios_left() to right
after ceph_process_folio_batch() to ensure it always gets called to
fix up the illegal folio_batch state.
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash after fscrypt_encrypt_pagecache_blocks() error
The function move_dirty_folio_in_page_array() was created by commit
ce80b76dd327 ("ceph: introduce ceph_process_folio_batch() method") by
moving code from ceph_writepages_start() to this function.
This new function is supposed to return an error code which is checked
by the caller (now ceph_process_folio_batch()), and on error, the
caller invokes redirty_page_for_writepage() and then breaks from the
loop.
However, the refactoring commit has gone wrong, and it by accident, it
always returns 0 (= success) because it first NULLs the pointer and
then returns PTR_ERR(NULL) which is always 0. This means errors are
silently ignored, leaving NULL entries in the page array, which may
later crash the kernel.
The simple solution is to call PTR_ERR() before clearing the pointer.
In the Linux kernel, the following vulnerability has been resolved:
igb: Fix NULL pointer dereference in ethtool loopback test
The igb driver currently causes a NULL pointer dereference when executing
the ethtool loopback test. This occurs because there is no associated
q_vector for the test ring when it is set up, as interrupts are typically
not added to the test rings.
Since commit 5ef44b3cb43b removed the napi_id assignment in
__xdp_rxq_info_reg(), there is no longer a need to pass a napi_id to it.
Therefore, simply use 0 as the last parameter.
In the Linux kernel, the following vulnerability has been resolved:
macsec: sync features on RTM_NEWLINK
Syzkaller managed to lock the lower device via ETHTOOL_SFEATURES:
netdev_lock include/linux/netdevice.h:2761 [inline]
netdev_lock_ops include/net/netdev_lock.h:42 [inline]
netdev_sync_lower_features net/core/dev.c:10649 [inline]
__netdev_update_features+0xcb1/0x1be0 net/core/dev.c:10819
netdev_update_features+0x6d/0xe0 net/core/dev.c:10876
macsec_notify+0x2f5/0x660 drivers/net/macsec.c:4533
notifier_call_chain+0x1b3/0x3e0 kernel/notifier.c:85
call_netdevice_notifiers_extack net/core/dev.c:2267 [inline]
call_netdevice_notifiers net/core/dev.c:2281 [inline]
netdev_features_change+0x85/0xc0 net/core/dev.c:1570
__dev_ethtool net/ethtool/ioctl.c:3469 [inline]
dev_ethtool+0x1536/0x19b0 net/ethtool/ioctl.c:3502
dev_ioctl+0x392/0x1150 net/core/dev_ioctl.c:759
It happens because lower features are out of sync with the upper:
__dev_ethtool (real_dev)
netdev_lock_ops(real_dev)
ETHTOOL_SFEATURES
__netdev_features_change
netdev_sync_upper_features
disable LRO on the lower
if (old_features != dev->features)
netdev_features_change
fires NETDEV_FEAT_CHANGE
macsec_notify
NETDEV_FEAT_CHANGE
netdev_update_features (for each macsec dev)
netdev_sync_lower_features
if (upper_features != lower_features)
netdev_lock_ops(lower) # lower == real_dev
stuck
...
netdev_unlock_ops(real_dev)
Per commit af5f54b0ef9e ("net: Lock lower level devices when updating
features"), we elide the lock/unlock when the upper and lower features
are synced. Makes sure the lower (real_dev) has proper features after
the macsec link has been created. This makes sure we never hit the
situation where we need to sync upper flags to the lower.
In the Linux kernel, the following vulnerability has been resolved:
hsr: hold rcu and dev lock for hsr_get_port_ndev
hsr_get_port_ndev calls hsr_for_each_port, which need to hold rcu lock.
On the other hand, before return the port device, we need to hold the
device reference to avoid UaF in the caller function.
A vulnerability has been found in fuyang_lipengjun platform 1.0. The impacted element is the function SysSmsLogController of the file /sys/smslog/queryAll. Such manipulation leads to improper authorization. The attack may be performed from remote. The exploit has been disclosed to the public and may be used.
In Liferay Portal 7.4.0 through 7.4.3.112, and older unsupported versions, and Liferay DXP 2023.Q4.0 through 2023.Q4.8, 2023.Q3.1 through 2023.Q3.10, 7.4 GA through update 92, and older unsupported versions the audit events records a user’s password reminder answer, which allows remote authenticated users to obtain a user’s password reminder answer via the audit events.
Insecure Direct Object Reference (IDOR) vulnerability with commerce order notes in Liferay Portal 7.3.5 through 7.4.3.112, and Liferay DXP 2023.Q4.0 through 2023.Q4.8, 2023.Q3.1 through 2023.Q3.10, and 7.4 GA through update 92 allows remote authenticated users to from one virtual instance to add a note to an order in a different virtual instance via the _com_liferay_commerce_order_web_internal_portlet_CommerceOrderPortlet_commerceOrderId parameter.
A flaw has been found in fuyang_lipengjun platform 1.0. The affected element is the function TopicCategoryController of the file /topiccategory/queryAll. This manipulation causes improper authorization. The attack is possible to be carried out remotely. The exploit has been published and may be used.
A vulnerability was detected in fuyang_lipengjun platform 1.0. Impacted is the function TopicController of the file /topic/queryAll. The manipulation results in improper authorization. The attack can be executed remotely. The exploit is now public and may be used.
A security vulnerability has been detected in fuyang_lipengjun platform 1.0. This issue affects the function UserCouponController of the file /usercoupon/queryAll. The manipulation leads to improper authorization. Remote exploitation of the attack is possible. The exploit has been disclosed publicly and may be used.
Batch Engine in Liferay Portal 7.4.0 through 7.4.3.112, and Liferay DXP 2023.Q4.0 through 2023.Q4.7, 2023.Q3.1 through 2023.Q3.10, and 7.4 GA through update 92 does not properly check permission with import and export tasks, which allows remote authenticated users to access the exported data via the REST APIs.
iNiLabs School Express (SMS Express) 6.2 is affected by a Stored Cross-Site Scripting (XSS) vulnerability in the content-management features available to authenticated admin users. The vulnerability resides in POSTed editor parameters submitted to the /posts/edit/{id} endpoint (and similarly in Notice and Pages editors). Due to insufficient input sanitization and output encoding, attackers can inject HTML/JS payloads. The payload is saved and later rendered unsanitized, resulting in JavaScript execution in other users' browsers when they access the affected content. This issue allows an authenticated attacker to execute arbitrary JavaScript in the context of another user, potentially leading to session hijacking, privilege escalation, data exfiltration, or administrative account takeover. The application does not enforce a restrictive Content Security Policy (CSP) or adequate filtering to prevent such attacks.
Stocky POS with Inventory Management & HRM (ui-lib) version 5.0 is affected by a Stored Cross-Site Scripting (XSS) vulnerability within the Products module available to authenticated users. The vulnerability resides in the product name parameter submitted to the product-creation endpoint via a standard POST form. Due to insufficient input sanitization and output encoding, attackers can inject HTML/JS payloads. The payload is stored and subsequently rendered unsanitized in downstream views, leading to JavaScript execution in other users' browsers when they access the affected product pages. This issue allows an authenticated attacker to execute arbitrary JavaScript in the context of another user, potentially enabling session hijacking, privilege escalation within the application, data exfiltration, or administrative account takeover. The application also lacks a restrictive Content Security Policy (CSP), increasing exploitability.
MagicProject AI version 9.1 is affected by a Cross-Site Scripting (XSS) vulnerability within the chatbot generation feature available to authenticated admin users. The vulnerability resides in the prompt parameter submitted to the /dashboard/user/generator/generate-stream endpoint via a multipart/form-data POST request. Due to insufficient input sanitization, attackers can inject HTML-based JavaScript payloads. This payload is stored and rendered unsanitized in subsequent views, leading to execution in other users' browsers when they access affected content. This issue allows an authenticated attacker to execute arbitrary JavaScript in the context of another user, potentially leading to session hijacking, privilege escalation, data exfiltration, or administrative account takeover. The application does not implement a Content Security Policy (CSP) or adequate input filtering to prevent such attacks. A fix should include proper sanitization, output encoding, and strong CSP enforcement to mitigate exploitation.
Missing Authorization vulnerability in VibeThemes WPLMS allows Exploiting Incorrectly Configured Access Control Security Levels. This issue affects WPLMS : from n/a through 4.970.
Exposure of Sensitive System Information to an Unauthorized Control Sphere vulnerability in Ays Pro Quiz Maker allows Retrieve Embedded Sensitive Data. This issue affects Quiz Maker: from n/a through 6.7.0.61.
Cross-Site Request Forgery (CSRF) vulnerability in Ays Pro Quiz Maker allows Cross Site Request Forgery. This issue affects Quiz Maker: from n/a through 6.7.0.61.
An Insertion of Sensitive Information into Sent Data vulnerability in the Ideal Postcodes UK Address Postcode Validation WordPress plugin exposes the API key, allowing unauthorized third parties to retrieve and reuse the key across any domain. Since API keys are unrestricted by default, with the “Allowed URLs” field left empty upon creation of API key this can lead to unauthorized use and depletion of API credits.Note: the vulnerability is assessed based on the default configuration.This issue affects UK Address Postcode Validation: from n/a through 3.9.2.
Cross-Site Scripting (XSS) vulnerability was discovered in the meal reservation service ARD. The vulnerability exists in the transactionID GET parameter on the transaction confirmation page. Due to improper input validation and output encoding, an attacker can inject malicious JavaScript code that is executed in the context of a user s browser. This can lead to session hijacking, theft of cookies, and other malicious actions performed on behalf of the victim.
IBM Sterling Connect:Express for Microsoft Windows 3.1.0.0 through 3.1.0.22 uses an inadequate account lockout setting that could allow a remote attacker to brute force account credentials.