CVE Database

Search and browse vulnerability records from NVD

Showing 50 of 13520 CVEs

CVE ID Severity Description EPSS Published
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/xe/vm: Clear the scratch_pt pointer on error Avoid triggering a dereference of an error pointer on cleanup in xe_vm_free_scratch() by clearing any scratch_pt error pointer. (cherry picked from commit 358ee50ab565f3c8ea32480e9d03127a81ba32f8)

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Add error handling for old state CRTC in atomic_disable Introduce error handling to address an issue where, after a hotplug event, the cursor continues to update. This situation can lead to a kernel panic due to accessing the NULL `old_state->crtc`. E,g. Unable to handle kernel NULL pointer dereference at virtual address Call trace: mtk_crtc_plane_disable+0x24/0x140 mtk_plane_atomic_update+0x8c/0xa8 drm_atomic_helper_commit_planes+0x114/0x2c8 drm_atomic_helper_commit_tail_rpm+0x4c/0x158 commit_tail+0xa0/0x168 drm_atomic_helper_commit+0x110/0x120 drm_atomic_commit+0x8c/0xe0 drm_atomic_helper_update_plane+0xd4/0x128 __setplane_atomic+0xcc/0x110 drm_mode_cursor_common+0x250/0x440 drm_mode_cursor_ioctl+0x44/0x70 drm_ioctl+0x264/0x5d8 __arm64_sys_ioctl+0xd8/0x510 invoke_syscall+0x6c/0xe0 do_el0_svc+0x68/0xe8 el0_svc+0x34/0x60 el0t_64_sync_handler+0x1c/0xf8 el0t_64_sync+0x180/0x188 Adding NULL pointer checks to ensure stability by preventing operations on an invalid CRTC state.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: net: macb: fix unregister_netdev call order in macb_remove() When removing a macb device, the driver calls phy_exit() before unregister_netdev(). This leads to a WARN from kernfs: ------------[ cut here ]------------ kernfs: can not remove 'attached_dev', no directory WARNING: CPU: 1 PID: 27146 at fs/kernfs/dir.c:1683 Call trace: kernfs_remove_by_name_ns+0xd8/0xf0 sysfs_remove_link+0x24/0x58 phy_detach+0x5c/0x168 phy_disconnect+0x4c/0x70 phylink_disconnect_phy+0x6c/0xc0 [phylink] macb_close+0x6c/0x170 [macb] ... macb_remove+0x60/0x168 [macb] platform_remove+0x5c/0x80 ... The warning happens because the PHY is being exited while the netdev is still registered. The correct order is to unregister the netdev before shutting down the PHY and cleaning up the MDIO bus. Fix this by moving unregister_netdev() ahead of phy_exit() in macb_remove().

0.0% 2025-09-16
6.2 MEDIUM

Information disclosure in the Networking: Cache component. This vulnerability affects Firefox < 143, Firefox ESR < 140.3, Thunderbird < 143, and Thunderbird < 140.3.

0.0% 2025-09-16
6.5 MEDIUM

Incorrect boundary conditions in the JavaScript: GC component. This vulnerability affects Firefox < 143, Firefox ESR < 140.3, Thunderbird < 143, and Thunderbird < 140.3.

0.1% 2025-09-16
5.4 MEDIUM

Mitigation bypass in the Web Compatibility: Tooling component. This vulnerability affects Firefox < 143 and Thunderbird < 143.

0.0% 2025-09-16
6.5 MEDIUM

Spoofing issue in the WebAuthn component in Firefox for Android. This vulnerability affects Firefox < 143 and Thunderbird < 143.

0.0% 2025-09-16
6.5 MEDIUM

Same-origin policy bypass in the Layout component. This vulnerability affects Firefox < 143, Firefox ESR < 140.3, Thunderbird < 143, and Thunderbird < 140.3.

0.1% 2025-09-16
5.4 MEDIUM

Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Dolusoft Omaspot allows Reflected XSS.This issue affects Omaspot: before 12.09.2025.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: net: microchip: vcap api: Fix possible memory leak for vcap_dup_rule() Inject fault When select CONFIG_VCAP_KUNIT_TEST, the below memory leak occurs. If kzalloc() for duprule succeeds, but the following kmemdup() fails, the duprule, ckf and caf memory will be leaked. So kfree them in the error path. unreferenced object 0xffff122744c50600 (size 192): comm "kunit_try_catch", pid 346, jiffies 4294896122 (age 911.812s) hex dump (first 32 bytes): 10 27 00 00 04 00 00 00 1e 00 00 00 2c 01 00 00 .'..........,... 00 00 00 00 00 00 00 00 18 06 c5 44 27 12 ff ff ...........D'... backtrace: [<00000000394b0db8>] __kmem_cache_alloc_node+0x274/0x2f8 [<0000000001bedc67>] kmalloc_trace+0x38/0x88 [<00000000b0612f98>] vcap_dup_rule+0x50/0x460 [<000000005d2d3aca>] vcap_add_rule+0x8cc/0x1038 [<00000000eef9d0f8>] test_vcap_xn_rule_creator.constprop.0.isra.0+0x238/0x494 [<00000000cbda607b>] vcap_api_rule_remove_in_front_test+0x1ac/0x698 [<00000000c8766299>] kunit_try_run_case+0xe0/0x20c [<00000000c4fe9186>] kunit_generic_run_threadfn_adapter+0x50/0x94 [<00000000f6864acf>] kthread+0x2e8/0x374 [<0000000022e639b3>] ret_from_fork+0x10/0x20

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: wifi: iwl4965: Add missing check for create_singlethread_workqueue() Add the check for the return value of the create_singlethread_workqueue() in order to avoid NULL pointer dereference.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: media: hi846: Fix memleak in hi846_init_controls() hi846_init_controls doesn't clean the allocated ctrl_hdlr in case there is a failure, which causes memleak. Add v4l2_ctrl_handler_free to free the resource properly.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: md/raid10: fix leak of 'r10bio->remaining' for recovery raid10_sync_request() will add 'r10bio->remaining' for both rdev and replacement rdev. However, if the read io fails, recovery_request_write() returns without issuing the write io, in this case, end_sync_request() is only called once and 'remaining' is leaked, cause an io hang. Fix the problem by decreasing 'remaining' according to if 'bio' and 'repl_bio' is valid.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: nfc: fix memory leak of se_io context in nfc_genl_se_io The callback context for sending/receiving APDUs to/from the selected secure element is allocated inside nfc_genl_se_io and supposed to be eventually freed in se_io_cb callback function. However, there are several error paths where the bwi_timer is not charged to call se_io_cb later, and the cb_context is leaked. The patch proposes to free the cb_context explicitly on those error paths. At the moment we can't simply check 'dev->ops->se_io()' return value as it may be negative in both cases: when the timer was charged and was not.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: fix "bad unlock balance" in l2cap_disconnect_rsp conn->chan_lock isn't acquired before l2cap_get_chan_by_scid, if l2cap_get_chan_by_scid returns NULL, then 'bad unlock balance' is triggered.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: sctp: check send stream number after wait_for_sndbuf This patch fixes a corner case where the asoc out stream count may change after wait_for_sndbuf. When the main thread in the client starts a connection, if its out stream count is set to N while the in stream count in the server is set to N - 2, another thread in the client keeps sending the msgs with stream number N - 1, and waits for sndbuf before processing INIT_ACK. However, after processing INIT_ACK, the out stream count in the client is shrunk to N - 2, the same to the in stream count in the server. The crash occurs when the thread waiting for sndbuf is awake and sends the msg in a non-existing stream(N - 1), the call trace is as below: KASAN: null-ptr-deref in range [0x0000000000000038-0x000000000000003f] Call Trace: <TASK> sctp_cmd_send_msg net/sctp/sm_sideeffect.c:1114 [inline] sctp_cmd_interpreter net/sctp/sm_sideeffect.c:1777 [inline] sctp_side_effects net/sctp/sm_sideeffect.c:1199 [inline] sctp_do_sm+0x197d/0x5310 net/sctp/sm_sideeffect.c:1170 sctp_primitive_SEND+0x9f/0xc0 net/sctp/primitive.c:163 sctp_sendmsg_to_asoc+0x10eb/0x1a30 net/sctp/socket.c:1868 sctp_sendmsg+0x8d4/0x1d90 net/sctp/socket.c:2026 inet_sendmsg+0x9d/0xe0 net/ipv4/af_inet.c:825 sock_sendmsg_nosec net/socket.c:722 [inline] sock_sendmsg+0xde/0x190 net/socket.c:745 The fix is to add an unlikely check for the send stream number after the thread wakes up from the wait_for_sndbuf.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: udf: Do not update file length for failed writes to inline files When write to inline file fails (or happens only partly), we still updated length of inline data as if the whole write succeeded. Fix the update of length of inline data to happen only if the write succeeds.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix null-ptr-deref on inode->i_op in ntfs_lookup() Syzbot reported a null-ptr-deref bug: ntfs3: loop0: Different NTFS' sector size (1024) and media sector size (512) ntfs3: loop0: Mark volume as dirty due to NTFS errors general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] RIP: 0010:d_flags_for_inode fs/dcache.c:1980 [inline] RIP: 0010:__d_add+0x5ce/0x800 fs/dcache.c:2796 Call Trace: <TASK> d_splice_alias+0x122/0x3b0 fs/dcache.c:3191 lookup_open fs/namei.c:3391 [inline] open_last_lookups fs/namei.c:3481 [inline] path_openat+0x10e6/0x2df0 fs/namei.c:3688 do_filp_open+0x264/0x4f0 fs/namei.c:3718 do_sys_openat2+0x124/0x4e0 fs/open.c:1310 do_sys_open fs/open.c:1326 [inline] __do_sys_open fs/open.c:1334 [inline] __se_sys_open fs/open.c:1330 [inline] __x64_sys_open+0x221/0x270 fs/open.c:1330 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd If the MFT record of ntfs inode is not a base record, inode->i_op can be NULL. And a null-ptr-deref may happen: ntfs_lookup() dir_search_u() # inode->i_op is set to NULL d_splice_alias() __d_add() d_flags_for_inode() # inode->i_op->get_link null-ptr-deref Fix this by adding a Check on inode->i_op before calling the d_splice_alias() function.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix NULL dereference on q->elevator in blk_mq_elv_switch_none After grabbing q->sysfs_lock, q->elevator may become NULL because of elevator switch. Fix the NULL dereference on q->elevator by checking it with lock.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale Running the 'kfree_rcu_test' test case [1] results in a splat [2]. The root cause is the kfree_scale_thread thread(s) continue running after unloading the rcuscale module. This commit fixes that isue by invoking kfree_scale_cleanup() from rcu_scale_cleanup() when removing the rcuscale module. [1] modprobe rcuscale kfree_rcu_test=1 // After some time rmmod rcuscale rmmod torture [2] BUG: unable to handle page fault for address: ffffffffc0601a87 #PF: supervisor instruction fetch in kernel mode #PF: error_code(0x0010) - not-present page PGD 11de4f067 P4D 11de4f067 PUD 11de51067 PMD 112f4d067 PTE 0 Oops: 0010 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 1798 Comm: kfree_scale_thr Not tainted 6.3.0-rc1-rcu+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 RIP: 0010:0xffffffffc0601a87 Code: Unable to access opcode bytes at 0xffffffffc0601a5d. RSP: 0018:ffffb25bc2e57e18 EFLAGS: 00010297 RAX: 0000000000000000 RBX: ffffffffc061f0b6 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff962fd0de RDI: ffffffff962fd0de RBP: ffffb25bc2e57ea8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000 R13: 0000000000000000 R14: 000000000000000a R15: 00000000001c1dbe FS: 0000000000000000(0000) GS:ffff921fa2200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffc0601a5d CR3: 000000011de4c006 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? kvfree_call_rcu+0xf0/0x3a0 ? kthread+0xf3/0x120 ? kthread_complete_and_exit+0x20/0x20 ? ret_from_fork+0x1f/0x30 </TASK> Modules linked in: rfkill sunrpc ... [last unloaded: torture] CR2: ffffffffc0601a87 ---[ end trace 0000000000000000 ]---

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: samples/bpf: Fix fout leak in hbm's run_bpf_prog Fix fout being fopen'ed but then not subsequently fclose'd. In the affected branch, fout is otherwise going out of scope.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: media: bdisp: Add missing check for create_workqueue Add the check for the return value of the create_workqueue in order to avoid NULL pointer dereference.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/client: Fix memory leak in drm_client_modeset_probe When a new mode is set to modeset->mode, the previous mode should be freed. This fixes the following kmemleak report: drm_mode_duplicate+0x45/0x220 [drm] drm_client_modeset_probe+0x944/0xf50 [drm] __drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper] drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper] drm_client_register+0x169/0x240 [drm] ast_pci_probe+0x142/0x190 [ast] local_pci_probe+0xdc/0x180 work_for_cpu_fn+0x4e/0xa0 process_one_work+0x8b7/0x1540 worker_thread+0x70a/0xed0 kthread+0x29f/0x340 ret_from_fork+0x1f/0x30

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: usb: cdns3: Put the cdns set active part outside the spin lock The device may be scheduled during the resume process, so this cannot appear in atomic operations. Since pm_runtime_set_active will resume suppliers, put set active outside the spin lock, which is only used to protect the struct cdns data structure, otherwise the kernel will report the following warning: BUG: sleeping function called from invalid context at drivers/base/power/runtime.c:1163 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 651, name: sh preempt_count: 1, expected: 0 RCU nest depth: 0, expected: 0 CPU: 0 PID: 651 Comm: sh Tainted: G WC 6.1.20 #1 Hardware name: Freescale i.MX8QM MEK (DT) Call trace: dump_backtrace.part.0+0xe0/0xf0 show_stack+0x18/0x30 dump_stack_lvl+0x64/0x80 dump_stack+0x1c/0x38 __might_resched+0x1fc/0x240 __might_sleep+0x68/0xc0 __pm_runtime_resume+0x9c/0xe0 rpm_get_suppliers+0x68/0x1b0 __pm_runtime_set_status+0x298/0x560 cdns_resume+0xb0/0x1c0 cdns3_controller_resume.isra.0+0x1e0/0x250 cdns3_plat_resume+0x28/0x40

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: check for null return of devm_kzalloc() in dpu_writeback_init() Because of the possilble failure of devm_kzalloc(), dpu_wb_conn might be NULL and will cause null pointer dereference later. Therefore, it might be better to check it and directly return -ENOMEM. Patchwork: https://patchwork.freedesktop.org/patch/512277/ [DB: fixed typo in commit message]

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drivers: staging: rtl8723bs: Fix locking in _rtw_join_timeout_handler() Commit 041879b12ddb ("drivers: staging: rtl8192bs: Fix deadlock in rtw_joinbss_event_prehandle()") besides fixing the deadlock also modified _rtw_join_timeout_handler() to use spin_[un]lock_irq() instead of spin_[un]lock_bh(). _rtw_join_timeout_handler() calls rtw_do_join() which takes pmlmepriv->scanned_queue.lock using spin_[un]lock_bh(). This spin_unlock_bh() call re-enables softirqs which triggers an oops in kernel/softirq.c: __local_bh_enable_ip() when it calls lockdep_assert_irqs_enabled(): [ 244.506087] WARNING: CPU: 2 PID: 0 at kernel/softirq.c:376 __local_bh_enable_ip+0xa6/0x100 ... [ 244.509022] Call Trace: [ 244.509048] <IRQ> [ 244.509100] _rtw_join_timeout_handler+0x134/0x170 [r8723bs] [ 244.509468] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs] [ 244.509772] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs] [ 244.510076] call_timer_fn+0x95/0x2a0 [ 244.510200] __run_timers.part.0+0x1da/0x2d0 This oops is causd by the switch to spin_[un]lock_irq() which disables the IRQs for the entire duration of _rtw_join_timeout_handler(). Disabling the IRQs is not necessary since all code taking this lock runs from either user contexts or from softirqs, switch back to spin_[un]lock_bh() to fix this.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Remove unused nvme_ls_waitq wait queue System crash when qla2x00_start_sp(sp) returns error code EGAIN and wake_up gets called for uninitialized wait queue sp->nvme_ls_waitq. qla2xxx [0000:37:00.1]-2121:5: Returning existing qpair of ffff8ae2c0513400 for idx=0 qla2xxx [0000:37:00.1]-700e:5: qla2x00_start_sp failed = 11 BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 09/03/2021 Workqueue: nvme-wq nvme_fc_connect_ctrl_work [nvme_fc] RIP: 0010:__wake_up_common+0x4c/0x190 RSP: 0018:ffff95f3e0cb7cd0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff8b08d3b26328 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8b08d3b26320 RBP: 0000000000000001 R08: 0000000000000000 R09: ffffffffffffffe8 R10: 0000000000000000 R11: ffff95f3e0cb7a60 R12: ffff95f3e0cb7d20 R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8b2fdf6c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000002f1e410002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: __wake_up_common_lock+0x7c/0xc0 qla_nvme_ls_req+0x355/0x4c0 [qla2xxx] ? __nvme_fc_send_ls_req+0x260/0x380 [nvme_fc] ? nvme_fc_send_ls_req.constprop.42+0x1a/0x45 [nvme_fc] ? nvme_fc_connect_ctrl_work.cold.63+0x1e3/0xa7d [nvme_fc] Remove unused nvme_ls_waitq wait queue. nvme_ls_waitq logic was removed previously in the commits tagged Fixed: below.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: misc: vmw_balloon: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix memory leak in ubifs_sysfs_init() When insmod ubifs.ko, a kmemleak reported as below: unreferenced object 0xffff88817fb1a780 (size 8): comm "insmod", pid 25265, jiffies 4295239702 (age 100.130s) hex dump (first 8 bytes): 75 62 69 66 73 00 ff ff ubifs... backtrace: [<ffffffff81b3fc4c>] slab_post_alloc_hook+0x9c/0x3c0 [<ffffffff81b44bf3>] __kmalloc_track_caller+0x183/0x410 [<ffffffff8198d3da>] kstrdup+0x3a/0x80 [<ffffffff8198d486>] kstrdup_const+0x66/0x80 [<ffffffff83989325>] kvasprintf_const+0x155/0x190 [<ffffffff83bf55bb>] kobject_set_name_vargs+0x5b/0x150 [<ffffffff83bf576b>] kobject_set_name+0xbb/0xf0 [<ffffffff8100204c>] do_one_initcall+0x14c/0x5a0 [<ffffffff8157e380>] do_init_module+0x1f0/0x660 [<ffffffff815857be>] load_module+0x6d7e/0x7590 [<ffffffff8158644f>] __do_sys_finit_module+0x19f/0x230 [<ffffffff815866b3>] __x64_sys_finit_module+0x73/0xb0 [<ffffffff88c98e85>] do_syscall_64+0x35/0x80 [<ffffffff88e00087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd When kset_register() failed, we should call kset_put to cleanup it.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: wifi: iwl3945: Add missing check for create_singlethread_workqueue Add the check for the return value of the create_singlethread_workqueue in order to avoid NULL pointer dereference.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ubifs: Free memory for tmpfile name When opening a ubifs tmpfile on an encrypted directory, function fscrypt_setup_filename allocates memory for the name that is to be stored in the directory entry, but after the name has been copied to the directory entry inode, the memory is not freed. When running kmemleak on it we see that it is registered as a leak. The report below is triggered by a simple program 'tmpfile' just opening a tmpfile: unreferenced object 0xffff88810178f380 (size 32): comm "tmpfile", pid 509, jiffies 4294934744 (age 1524.742s) backtrace: __kmem_cache_alloc_node __kmalloc fscrypt_setup_filename ubifs_tmpfile vfs_tmpfile path_openat Free this memory after it has been copied to the inode.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: fix a possible null-pointer dereference due to data race in snd_hdac_regmap_sync() The variable codec->regmap is often protected by the lock codec->regmap_lock when is accessed. However, it is accessed without holding the lock when is accessed in snd_hdac_regmap_sync(): if (codec->regmap) In my opinion, this may be a harmful race, because if codec->regmap is set to NULL right after the condition is checked, a null-pointer dereference can occur in the called function regcache_sync(): map->lock(map->lock_arg); --> Line 360 in drivers/base/regmap/regcache.c To fix this possible null-pointer dereference caused by data race, the mutex_lock coverage is extended to protect the if statement as well as the function call to regcache_sync(). [ Note: the lack of the regmap_lock itself is harmless for the current codec driver implementations, as snd_hdac_regmap_sync() is only for PM runtime resume that is prohibited during the codec probe. But the change makes the whole code more consistent, so it's merged as is -- tiwai ]

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: Drivers: vmbus: Check for channel allocation before looking up relids relid2channel() assumes vmbus channel array to be allocated when called. However, in cases such as kdump/kexec, not all relids will be reset by the host. When the second kernel boots and if the guest receives a vmbus interrupt during vmbus driver initialization before vmbus_connect() is called, before it finishes, or if it fails, the vmbus interrupt service routine is called which in turn calls relid2channel() and can cause a null pointer dereference. Print a warning and error out in relid2channel() for a channel id that's invalid in the second kernel.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ubi: Fix unreferenced object reported by kmemleak in ubi_resize_volume() There is a memory leaks problem reported by kmemleak: unreferenced object 0xffff888102007a00 (size 128): comm "ubirsvol", pid 32090, jiffies 4298464136 (age 2361.231s) hex dump (first 32 bytes): ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ backtrace: [<ffffffff8176cecd>] __kmalloc+0x4d/0x150 [<ffffffffa02a9a36>] ubi_eba_create_table+0x76/0x170 [ubi] [<ffffffffa029764e>] ubi_resize_volume+0x1be/0xbc0 [ubi] [<ffffffffa02a3321>] ubi_cdev_ioctl+0x701/0x1850 [ubi] [<ffffffff81975d2d>] __x64_sys_ioctl+0x11d/0x170 [<ffffffff83c142a5>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 This is due to a mismatch between create and destroy interfaces, and in detail that "new_eba_tbl" created by ubi_eba_create_table() but destroyed by kfree(), while will causing "new_eba_tbl->entries" not freed. Fix it by replacing kfree(new_eba_tbl) with ubi_eba_destroy_table(new_eba_tbl)

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ext4: fix i_disksize exceeding i_size problem in paritally written case It is possible for i_disksize can exceed i_size, triggering a warning. generic_perform_write copied = iov_iter_copy_from_user_atomic(len) // copied < len ext4_da_write_end | ext4_update_i_disksize | new_i_size = pos + copied; | WRITE_ONCE(EXT4_I(inode)->i_disksize, newsize) // update i_disksize | generic_write_end | copied = block_write_end(copied, len) // copied = 0 | if (unlikely(copied < len)) | if (!PageUptodate(page)) | copied = 0; | if (pos + copied > inode->i_size) // return false if (unlikely(copied == 0)) goto again; if (unlikely(iov_iter_fault_in_readable(i, bytes))) { status = -EFAULT; break; } We get i_disksize greater than i_size here, which could trigger WARNING check 'i_size_read(inode) < EXT4_I(inode)->i_disksize' while doing dio: ext4_dio_write_iter iomap_dio_rw __iomap_dio_rw // return err, length is not aligned to 512 ext4_handle_inode_extension WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize) // Oops WARNING: CPU: 2 PID: 2609 at fs/ext4/file.c:319 CPU: 2 PID: 2609 Comm: aa Not tainted 6.3.0-rc2 RIP: 0010:ext4_file_write_iter+0xbc7 Call Trace: vfs_write+0x3b1 ksys_write+0x77 do_syscall_64+0x39 Fix it by updating 'copied' value before updating i_disksize just like ext4_write_inline_data_end() does. A reproducer can be found in the buganizer link below.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: block: ublk: make sure that block size is set correctly block size is one very key setting for block layer, and bad block size could panic kernel easily. Make sure that block size is set correctly. Meantime if ublk_validate_params() fails, clear ub->params so that disk is prevented from being added.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ASoC: fsl_mqs: move of_node_put() to the correct location of_node_put() should have been done directly after mqs_priv->regmap = syscon_node_to_regmap(gpr_np); otherwise it creates a reference leak on the success path. To fix this, of_node_put() is moved to the correct location, and change all the gotos to direct returns.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: driver: soc: xilinx: fix memory leak in xlnx_add_cb_for_notify_event() The kfree() should be called when memory fails to be allocated for cb_data in xlnx_add_cb_for_notify_event(), otherwise there will be a memory leak, so add kfree() to fix it.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: arm64: acpi: Fix possible memory leak of ffh_ctxt Allocated 'ffh_ctxt' memory leak is possible if the SMCCC version and conduit checks fail and -EOPNOTSUPP is returned without freeing the allocated memory. Fix the same by moving the allocation after the SMCCC version and conduit checks.

0.0% 2025-09-16
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: clk: imx: clk-imxrt1050: fix memory leak in imxrt1050_clocks_probe Use devm_of_iomap() instead of of_iomap() to automatically handle the unused ioremap region. If any error occurs, regions allocated by kzalloc() will leak, but using devm_kzalloc() instead will automatically free the memory using devm_kfree(). Also, fix error handling of hws by adding unregister_hws label, which unregisters remaining hws when iomap failed.

0.0% 2025-09-16
5.5 MEDIUM

The issue was addressed with improved checks. This issue is fixed in Xcode 26. Processing an overly large path value may crash a process.

0.1% 2025-09-15
4.0 MEDIUM

A path handling issue was addressed with improved validation. This issue is fixed in Xcode 26. Processing an overly large path value may crash a process.

0.0% 2025-09-15
5.5 MEDIUM

This issue was addressed with improved handling of symlinks. This issue is fixed in macOS Tahoe 26. An app may be able to access protected user data.

0.0% 2025-09-15
4.3 MEDIUM

A use-after-free issue was addressed with improved memory management. This issue is fixed in Safari 26, iOS 26 and iPadOS 26. Processing maliciously crafted web content may lead to an unexpected Safari crash.

0.1% 2025-09-15
5.5 MEDIUM

A privacy issue was addressed by moving sensitive data. This issue is fixed in macOS Sonoma 14.8. An app may be able to access protected user data.

0.0% 2025-09-15
5.5 MEDIUM

An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in macOS Tahoe 26. An app may be able to disclose coprocessor memory.

0.0% 2025-09-15
6.5 MEDIUM

The issue was addressed with improved handling of caches. This issue is fixed in Safari 26, tvOS 26, watchOS 26, iOS 26 and iPadOS 26, visionOS 26, iOS 18.7 and iPadOS 18.7. A website may be able to access sensor information without user consent.

0.1% 2025-09-15
5.5 MEDIUM

A type confusion issue was addressed with improved memory handling. This issue is fixed in tvOS 26, watchOS 26, macOS Sonoma 14.8, iOS 26 and iPadOS 26, macOS Sequoia 15.7, visionOS 26, iOS 18.7 and iPadOS 18.7. An app may be able to cause a denial-of-service.

0.0% 2025-09-15
5.5 MEDIUM

A logging issue was addressed with improved data redaction. This issue is fixed in visionOS 26, tvOS 26, iOS 26 and iPadOS 26, watchOS 26. An app may be able to access sensitive user data.

0.0% 2025-09-15
5.5 MEDIUM

The issue was addressed with improved bounds checks. This issue is fixed in macOS Sonoma 14.8, macOS Sequoia 15.7. Processing a maliciously crafted string may lead to heap corruption.

0.0% 2025-09-15