The NPM package `braces`, versions prior to 3.0.3, fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In `lib/parse.js,` if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash.
An issue was discovered in xmllint (from libxml2) before 2.11.8 and 2.12.x before 2.12.7. Formatting error messages with xmllint --htmlout can result in a buffer over-read in xmlHTMLPrintFileContext in xmllint.c.
A sql injection vulnerability exists in CyberPower PowerPanel Enterprise prior to v2.8.3. An unauthenticated remote attacker can leak sensitive information via the "query_ptask_verbose" function within MCUDBHelper.
A sql injection vulnerability exists in CyberPower PowerPanel Enterprise prior to v2.8.3. An unauthenticated remote attacker can leak sensitive information via the "query_ptask_lean" function within MCUDBHelper.
A sql injection vulnerability exists in CyberPower PowerPanel Enterprise prior to v2.8.3. An unauthenticated remote attacker can leak sensitive information via the "query_contract_result" function within MCUDBHelper.
A sql injection vulnerability exists in CyberPower PowerPanel Enterprise prior to v2.8.3. An unauthenticated remote attacker can leak sensitive information via the "query_utask_verbose" function within MCUDBHelper.
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, there is a file inclusion issue in the `lib/plugin.php` file. Combined with SQL injection vulnerabilities, remote code execution can be implemented. There is a file inclusion issue with the `api_plugin_hook()` function in the `lib/plugin.php` file, which reads the plugin_hooks and plugin_config tables in database. The read data is directly used to concatenate the file path which is used for file inclusion. Version 1.2.27 contains a patch for the issue.
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, a SQL injection vulnerability in `automation_get_new_graphs_sql` function of `api_automation.php` allows authenticated users to exploit these SQL injection vulnerabilities to perform privilege escalation and remote code execution. In `api_automation.php` line 856, the `get_request_var('filter')` is being concatenated into the SQL statement without any sanitization. In `api_automation.php` line 717, The filter of `'filter'` is `FILTER_DEFAULT`, which means there is no filter for it. Version 1.2.27 contains a patch for the issue.
The issue was addressed with improved checks. This issue is fixed in iTunes 12.13.2 for Windows. Parsing a file may lead to an unexpected app termination or arbitrary code execution.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: use timestamp to check for set element timeout
Add a timestamp field at the beginning of the transaction, store it
in the nftables per-netns area.
Update set backend .insert, .deactivate and sync gc path to use the
timestamp, this avoids that an element expires while control plane
transaction is still unfinished.
.lookup and .update, which are used from packet path, still use the
current time to check if the element has expired. And .get path and dump
also since this runs lockless under rcu read size lock. Then, there is
async gc which also needs to check the current time since it runs
asynchronously from a workqueue.
strongSwan versions 5.9.2 through 5.9.5 are affected by authorization bypass through improper validation of certificate with host mismatch (CWE-297). When certificates are used to authenticate clients in TLS-based EAP methods, the IKE or EAP identity supplied by a client is not enforced to be contained in the client's certificate. So clients can authenticate with any trusted certificate and claim an arbitrary IKE/EAP identity as their own. This is problematic if the identity is used to make policy decisions. A fix was released in strongSwan version 5.9.6 in August 2022 (e4b4aabc4996fc61c37deab7858d07bc4d220136).
When IPsec is configured on a virtual server, undisclosed traffic can cause the Traffic Management Microkernel (TMM) to terminate.
Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
A stored cross-site scripting (XSS) vulnerability exists in an undisclosed page of the BIG-IP Configuration utility that allows an attacker to run JavaScript in the context of the currently logged-in user. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
When BIG-IP AFM is licensed and provisioned, undisclosed DNS traffic can cause the Traffic Management Microkernel (TMM) to terminate.
Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
Suricata is a network Intrusion Detection System, Intrusion Prevention System and Network Security Monitoring engine. Prior to 7.0.5 and 6.0.19, a small amount of HTTP/2 traffic can lead to Suricata using a large amount of memory. The issue has been addressed in Suricata 7.0.5 and 6.0.19. Workarounds include disabling the HTTP/2 parser and reducing `app-layer.protocols.http2.max-table-size` value (default is 65536).
Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. This vulnerability is fixed in 3.0.3.
An issue was discovered in includes/CommentFormatter/CommentParser.php in MediaWiki before 1.39.7, 1.40.x before 1.40.3, and 1.41.x before 1.41.1. XSS can occur because of mishandling of the 0x1b character, as demonstrated by Special:RecentChanges#%1b0000000.
An issue was discovered in includes/specials/SpecialMovePage.php in MediaWiki before 1.39.7, 1.40.x before 1.40.3, and 1.41.x before 1.41.1. If a user with the necessary rights to move the page opens Special:MovePage for a page with tens of thousands of subpages, then the page will exceed the maximum request time, leading to a denial of service.
BlueZ Phone Book Access Profile Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of BlueZ. User interaction is required to exploit this vulnerability in that the target must connect to a malicious Bluetooth device.
The specific flaw exists within the handling of the Phone Book Access profile. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20938.
BlueZ Phone Book Access Profile Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of BlueZ. User interaction is required to exploit this vulnerability in that the target must connect to a malicious Bluetooth device.
The specific flaw exists within the handling of the Phone Book Access profile. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20936.
GStreamer MXF File Parsing Use-After-Free Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of MXF video files. The issue results from the lack of validating the existence of an object prior to performing operations on the object. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-22299.
GIMP PSP File Parsing Off-By-One Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PSP files. Crafted data in a PSP file can trigger an off-by-one error when calculating a location to write within a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-22097.
GIMP PSD File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PSD files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute arbitrary code in the context of the current process. Was ZDI-CAN-22094.
GIMP DDS File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of DDS files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-22093.
RARLAB WinRAR Recovery Volume Improper Validation of Array Index Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of RARLAB WinRAR. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the processing of recovery volumes. The issue results from the lack of proper validation of user-supplied data, which can result in a memory access past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-21233.
GStreamer H265 Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of H265 encoded video files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-21768.
GStreamer MXF File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of MXF video files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-21661.
GStreamer MXF File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of MXF video files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-21660.
GStreamer SRT File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of SRT subtitle files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20968.
GStreamer PGS File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of PGS subtitle files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-20994.
GStreamer FLAC File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of FLAC audio files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20775.
BlueZ Audio Profile AVRCP Improper Validation of Array Index Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code via Bluetooth on affected installations of BlueZ. User interaction is required to exploit this vulnerability in that the target must connect to a malicious device.
The specific flaw exists within the handling of the AVRCP protocol. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-19908.
An issue was discovered in uriparser through 0.9.7. ComposeQueryEngine in UriQuery.c has an integer overflow via long keys or values, with a resultant buffer overflow.
libxmljs is vulnerable to a type confusion vulnerability when parsing a specially crafted XML while invoking the namespaces() function (which invokes _wrap__xmlNode_nsDef_get()) on a grand-child of a node that refers to an entity. This vulnerability can lead to denial of service and remote code execution.
libxmljs is vulnerable to a type confusion vulnerability when parsing a specially crafted XML while invoking a function on the result of attrs() that was called on a parsed node. This vulnerability might lead to denial of service (on both 32-bit systems and 64-bit systems), data leak, infinite loop and remote code execution (on 32-bit systems with the XML_PARSE_HUGE flag enabled).
A sandbox bypass vulnerability involving sandbox-defined classes that shadow specific non-sandbox-defined classes in Jenkins Script Security Plugin 1335.vf07d9ce377a_e and earlier allows attackers with permission to define and run sandboxed scripts, including Pipelines, to bypass the sandbox protection and execute arbitrary code in the context of the Jenkins controller JVM.
aiohttp is an asynchronous HTTP client/server framework for asyncio and Python. In affected versions an attacker can send a specially crafted POST (multipart/form-data) request. When the aiohttp server processes it, the server will enter an infinite loop and be unable to process any further requests. An attacker can stop the application from serving requests after sending a single request. This issue has been addressed in version 3.9.4. Users are advised to upgrade. Users unable to upgrade may manually apply a patch to their systems. Please see the linked GHSA for instructions.
A firmware update vulnerability exists in the luci2-io file-import functionality of Milesight UR32L v32.3.0.7-r2. A specially crafted network request can lead to arbitrary firmware update. An attacker can send a network request to trigger this vulnerability.
Type confusion in ANGLE in Google Chrome prior to 124.0.6367.78 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Critical)
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: avoid stack overflow warnings with clang
A previous patch worked around a KASAN issue in stv0367, now a similar
problem showed up with clang:
drivers/media/dvb-frontends/stv0367.c:1222:12: error: stack frame size (3624) exceeds limit (2048) in 'stv0367ter_set_frontend' [-Werror,-Wframe-larger-than]
1214 | static int stv0367ter_set_frontend(struct dvb_frontend *fe)
Rework the stv0367_writereg() function to be simpler and mark both
register access functions as noinline_for_stack so the temporary
i2c_msg structures do not get duplicated on the stack when KASAN_STACK
is enabled.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: do not compare internal table flags on updates
Restore skipping transaction if table update does not modify flags.
In the Linux kernel, the following vulnerability has been resolved:
fork: defer linking file vma until vma is fully initialized
Thorvald reported a WARNING [1]. And the root cause is below race:
CPU 1 CPU 2
fork hugetlbfs_fallocate
dup_mmap hugetlbfs_punch_hole
i_mmap_lock_write(mapping);
vma_interval_tree_insert_after -- Child vma is visible through i_mmap tree.
i_mmap_unlock_write(mapping);
hugetlb_dup_vma_private -- Clear vma_lock outside i_mmap_rwsem!
i_mmap_lock_write(mapping);
hugetlb_vmdelete_list
vma_interval_tree_foreach
hugetlb_vma_trylock_write -- Vma_lock is cleared.
tmp->vm_ops->open -- Alloc new vma_lock outside i_mmap_rwsem!
hugetlb_vma_unlock_write -- Vma_lock is assigned!!!
i_mmap_unlock_write(mapping);
hugetlb_dup_vma_private() and hugetlb_vm_op_open() are called outside
i_mmap_rwsem lock while vma lock can be used in the same time. Fix this
by deferring linking file vma until vma is fully initialized. Those vmas
should be initialized first before they can be used.
In the Linux kernel, the following vulnerability has been resolved:
r8169: fix LED-related deadlock on module removal
Binding devm_led_classdev_register() to the netdev is problematic
because on module removal we get a RTNL-related deadlock. Fix this
by avoiding the device-managed LED functions.
Note: We can safely call led_classdev_unregister() for a LED even
if registering it failed, because led_classdev_unregister() detects
this and is a no-op in this case.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get()
nft_unregister_expr() can concurrent with __nft_expr_type_get(),
and there is not any protection when iterate over nf_tables_expressions
list in __nft_expr_type_get(). Therefore, there is potential data-race
of nf_tables_expressions list entry.
Use list_for_each_entry_rcu() to iterate over nf_tables_expressions
list in __nft_expr_type_get(), and use rcu_read_lock() in the caller
nft_expr_type_get() to protect the entire type query process.
In the Linux kernel, the following vulnerability has been resolved:
drm: nv04: Fix out of bounds access
When Output Resource (dcb->or) value is assigned in
fabricate_dcb_output(), there may be out of bounds access to
dac_users array in case dcb->or is zero because ffs(dcb->or) is
used as index there.
The 'or' argument of fabricate_dcb_output() must be interpreted as a
number of bit to set, not value.
Utilize macros from 'enum nouveau_or' in calls instead of hardcoding.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
serial: mxs-auart: add spinlock around changing cts state
The uart_handle_cts_change() function in serial_core expects the caller
to hold uport->lock. For example, I have seen the below kernel splat,
when the Bluetooth driver is loaded on an i.MX28 board.
[ 85.119255] ------------[ cut here ]------------
[ 85.124413] WARNING: CPU: 0 PID: 27 at /drivers/tty/serial/serial_core.c:3453 uart_handle_cts_change+0xb4/0xec
[ 85.134694] Modules linked in: hci_uart bluetooth ecdh_generic ecc wlcore_sdio configfs
[ 85.143314] CPU: 0 PID: 27 Comm: kworker/u3:0 Not tainted 6.6.3-00021-gd62a2f068f92 #1
[ 85.151396] Hardware name: Freescale MXS (Device Tree)
[ 85.156679] Workqueue: hci0 hci_power_on [bluetooth]
(...)
[ 85.191765] uart_handle_cts_change from mxs_auart_irq_handle+0x380/0x3f4
[ 85.198787] mxs_auart_irq_handle from __handle_irq_event_percpu+0x88/0x210
(...)
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_ncm: Fix UAF ncm object at re-bind after usb ep transport error
When ncm function is working and then stop usb0 interface for link down,
eth_stop() is called. At this piont, accidentally if usb transport error
should happen in usb_ep_enable(), 'in_ep' and/or 'out_ep' may not be enabled.
After that, ncm_disable() is called to disable for ncm unbind
but gether_disconnect() is never called since 'in_ep' is not enabled.
As the result, ncm object is released in ncm unbind
but 'dev->port_usb' associated to 'ncm->port' is not NULL.
And when ncm bind again to recover netdev, ncm object is reallocated
but usb0 interface is already associated to previous released ncm object.
Therefore, once usb0 interface is up and eth_start_xmit() is called,
released ncm object is dereferrenced and it might cause use-after-free memory.
[function unlink via configfs]
usb0: eth_stop dev->port_usb=ffffff9b179c3200
--> error happens in usb_ep_enable().
NCM: ncm_disable: ncm=ffffff9b179c3200
--> no gether_disconnect() since ncm->port.in_ep->enabled is false.
NCM: ncm_unbind: ncm unbind ncm=ffffff9b179c3200
NCM: ncm_free: ncm free ncm=ffffff9b179c3200 <-- released ncm
[function link via configfs]
NCM: ncm_alloc: ncm alloc ncm=ffffff9ac4f8a000
NCM: ncm_bind: ncm bind ncm=ffffff9ac4f8a000
NCM: ncm_set_alt: ncm=ffffff9ac4f8a000 alt=0
usb0: eth_open dev->port_usb=ffffff9b179c3200 <-- previous released ncm
usb0: eth_start dev->port_usb=ffffff9b179c3200 <--
eth_start_xmit()
--> dev->wrap()
Unable to handle kernel paging request at virtual address dead00000000014f
This patch addresses the issue by checking if 'ncm->netdev' is not NULL at
ncm_disable() to call gether_disconnect() to deassociate 'dev->port_usb'.
It's more reasonable to check 'ncm->netdev' to call gether_connect/disconnect
rather than check 'ncm->port.in_ep->enabled' since it might not be enabled
but the gether connection might be established.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: Correct the PDO counting in pd_set
Off-by-one errors happen because nr_snk_pdo and nr_src_pdo are
incorrectly added one. The index of the loop is equal to the number of
PDOs to be updated when leaving the loop and it doesn't need to be added
one.
When doing the power negotiation, TCPM relies on the "nr_snk_pdo" as
the size of the local sink PDO array to match the Source capabilities
of the partner port. If the off-by-one overflow occurs, a wrong RDO
might be sent and unexpected power transfer might happen such as over
voltage or over current (than expected).
"nr_src_pdo" is used to set the Rp level when the port is in Source
role. It is also the array size of the local Source capabilities when
filling up the buffer which will be sent as the Source PDOs (such as
in Power Negotiation). If the off-by-one overflow occurs, a wrong Rp
level might be set and wrong Source PDOs will be sent to the partner
port. This could potentially cause over current or port resets.