In the Linux kernel, the following vulnerability has been resolved:
PCI: Add missing bridge lock to pci_bus_lock()
One of the true positives that the cfg_access_lock lockdep effort
identified is this sequence:
WARNING: CPU: 14 PID: 1 at drivers/pci/pci.c:4886 pci_bridge_secondary_bus_reset+0x5d/0x70
RIP: 0010:pci_bridge_secondary_bus_reset+0x5d/0x70
Call Trace:
<TASK>
? __warn+0x8c/0x190
? pci_bridge_secondary_bus_reset+0x5d/0x70
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? pci_bridge_secondary_bus_reset+0x5d/0x70
pci_reset_bus+0x1d8/0x270
vmd_probe+0x778/0xa10
pci_device_probe+0x95/0x120
Where pci_reset_bus() users are triggering unlocked secondary bus resets.
Ironically pci_bus_reset(), several calls down from pci_reset_bus(), uses
pci_bus_lock() before issuing the reset which locks everything *but* the
bridge itself.
For the same motivation as adding:
bridge = pci_upstream_bridge(dev);
if (bridge)
pci_dev_lock(bridge);
to pci_reset_function() for the "bus" and "cxl_bus" reset cases, add
pci_dev_lock() for @bus->self to pci_bus_lock().
[bhelgaas: squash in recursive locking deadlock fix from Keith Busch:
https://lore.kernel.org/r/20240711193650.701834-1-kbusch@meta.com]
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Set the max subreq size for cache writes to MAX_RW_COUNT
Set the maximum size of a subrequest that writes to cachefiles to be
MAX_RW_COUNT so that we don't overrun the maximum write we can make to the
backing filesystem.
In the Linux kernel, the following vulnerability has been resolved:
Input: uinput - reject requests with unreasonable number of slots
When exercising uinput interface syzkaller may try setting up device
with a really large number of slots, which causes memory allocation
failure in input_mt_init_slots(). While this allocation failure is
handled properly and request is rejected, it results in syzkaller
reports. Additionally, such request may put undue burden on the
system which will try to free a lot of memory for a bogus request.
Fix it by limiting allowed number of slots to 100. This can easily
be extended if we see devices that can track more than 100 contacts.
In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix potential null-ptr-deref of lease_ctx_info in smb2_open()
null-ptr-deref will occur when (req_op_level == SMB2_OPLOCK_LEVEL_LEASE)
and parse_lease_state() return NULL.
Fix this by check if 'lease_ctx_info' is NULL.
Additionally, remove the redundant parentheses in
parse_durable_handle_context().
In the Linux kernel, the following vulnerability has been resolved:
uio_hv_generic: Fix kernel NULL pointer dereference in hv_uio_rescind
For primary VM Bus channels, primary_channel pointer is always NULL. This
pointer is valid only for the secondary channels. Also, rescind callback
is meant for primary channels only.
Fix NULL pointer dereference by retrieving the device_obj from the parent
for the primary channel.
In the Linux kernel, the following vulnerability has been resolved:
nvmet-tcp: fix kernel crash if commands allocation fails
If the commands allocation fails in nvmet_tcp_alloc_cmds()
the kernel crashes in nvmet_tcp_release_queue_work() because of
a NULL pointer dereference.
nvmet: failed to install queue 0 cntlid 1 ret 6
Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000008
Fix the bug by setting queue->nr_cmds to zero in case
nvmet_tcp_alloc_cmd() fails.
In the Linux kernel, the following vulnerability has been resolved:
ublk_drv: fix NULL pointer dereference in ublk_ctrl_start_recovery()
When two UBLK_CMD_START_USER_RECOVERY commands are submitted, the
first one sets 'ubq->ubq_daemon' to NULL, and the second one triggers
WARN in ublk_queue_reinit() and subsequently a NULL pointer dereference
issue.
Fix it by adding the check in ublk_ctrl_start_recovery() and return
immediately in case of zero 'ub->nr_queues_ready'.
BUG: kernel NULL pointer dereference, address: 0000000000000028
RIP: 0010:ublk_ctrl_start_recovery.constprop.0+0x82/0x180
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x75/0x170
? exc_page_fault+0x64/0x140
? asm_exc_page_fault+0x22/0x30
? ublk_ctrl_start_recovery.constprop.0+0x82/0x180
ublk_ctrl_uring_cmd+0x4f7/0x6c0
? pick_next_task_idle+0x26/0x40
io_uring_cmd+0x9a/0x1b0
io_issue_sqe+0x193/0x3f0
io_wq_submit_work+0x9b/0x390
io_worker_handle_work+0x165/0x360
io_wq_worker+0xcb/0x2f0
? finish_task_switch.isra.0+0x203/0x290
? finish_task_switch.isra.0+0x203/0x290
? __pfx_io_wq_worker+0x10/0x10
ret_from_fork+0x2d/0x50
? __pfx_io_wq_worker+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between direct IO write and fsync when using same fd
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:
1) Attempt a fsync without holding the inode's lock, triggering an
assertion failures when assertions are enabled;
2) Do an invalid memory access from the fsync task because the file private
points to memory allocated on stack by the direct IO task and it may be
used by the fsync task after the stack was destroyed.
The race happens like this:
1) A user space program opens a file descriptor with O_DIRECT;
2) The program spawns 2 threads using libpthread for example;
3) One of the threads uses the file descriptor to do direct IO writes,
while the other calls fsync using the same file descriptor.
4) Call task A the thread doing direct IO writes and task B the thread
doing fsyncs;
5) Task A does a direct IO write, and at btrfs_direct_write() sets the
file's private to an on stack allocated private with the member
'fsync_skip_inode_lock' set to true;
6) Task B enters btrfs_sync_file() and sees that there's a private
structure associated to the file which has 'fsync_skip_inode_lock' set
to true, so it skips locking the inode's VFS lock;
7) Task A completes the direct IO write, and resets the file's private to
NULL since it had no prior private and our private was stack allocated.
Then it unlocks the inode's VFS lock;
8) Task B enters btrfs_get_ordered_extents_for_logging(), then the
assertion that checks the inode's VFS lock is held fails, since task B
never locked it and task A has already unlocked it.
The stack trace produced is the following:
assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
------------[ cut here ]------------
kernel BUG at fs/btrfs/ordered-data.c:983!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
Code: 50 d6 86 c0 e8 (...)
RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x24
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? exc_invalid_op+0x50/0x70
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? asm_exc_invalid_op+0x1a/0x20
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? __seccomp_filter+0x31d/0x4f0
__x64_sys_fdatasync+0x4f/0x90
do_syscall_64+0x82/0x160
? do_futex+0xcb/0x190
? __x64_sys_futex+0x10e/0x1d0
? switch_fpu_return+0x4f/0xd0
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mod
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix qgroup reserve leaks in cow_file_range
In the buffered write path, the dirty page owns the qgroup reserve until
it creates an ordered_extent.
Therefore, any errors that occur before the ordered_extent is created
must free that reservation, or else the space is leaked. The fstest
generic/475 exercises various IO error paths, and is able to trigger
errors in cow_file_range where we fail to get to allocating the ordered
extent. Note that because we *do* clear delalloc, we are likely to
remove the inode from the delalloc list, so the inodes/pages to not have
invalidate/launder called on them in the commit abort path.
This results in failures at the unmount stage of the test that look like:
BTRFS: error (device dm-8 state EA) in cleanup_transaction:2018: errno=-5 IO failure
BTRFS: error (device dm-8 state EA) in btrfs_replace_file_extents:2416: errno=-5 IO failure
BTRFS warning (device dm-8 state EA): qgroup 0/5 has unreleased space, type 0 rsv 28672
------------[ cut here ]------------
WARNING: CPU: 3 PID: 22588 at fs/btrfs/disk-io.c:4333 close_ctree+0x222/0x4d0 [btrfs]
Modules linked in: btrfs blake2b_generic libcrc32c xor zstd_compress raid6_pq
CPU: 3 PID: 22588 Comm: umount Kdump: loaded Tainted: G W 6.10.0-rc7-gab56fde445b8 #21
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
RIP: 0010:close_ctree+0x222/0x4d0 [btrfs]
RSP: 0018:ffffb4465283be00 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffffa1a1818e1000 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ffffb4465283bbe0 RDI: ffffa1a19374fcb8
RBP: ffffa1a1818e13c0 R08: 0000000100028b16 R09: 0000000000000000
R10: 0000000000000003 R11: 0000000000000003 R12: ffffa1a18ad7972c
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f9168312b80(0000) GS:ffffa1a4afcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f91683c9140 CR3: 000000010acaa000 CR4: 00000000000006f0
Call Trace:
<TASK>
? close_ctree+0x222/0x4d0 [btrfs]
? __warn.cold+0x8e/0xea
? close_ctree+0x222/0x4d0 [btrfs]
? report_bug+0xff/0x140
? handle_bug+0x3b/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? close_ctree+0x222/0x4d0 [btrfs]
generic_shutdown_super+0x70/0x160
kill_anon_super+0x11/0x40
btrfs_kill_super+0x11/0x20 [btrfs]
deactivate_locked_super+0x2e/0xa0
cleanup_mnt+0xb5/0x150
task_work_run+0x57/0x80
syscall_exit_to_user_mode+0x121/0x130
do_syscall_64+0xab/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f916847a887
---[ end trace 0000000000000000 ]---
BTRFS error (device dm-8 state EA): qgroup reserved space leaked
Cases 2 and 3 in the out_reserve path both pertain to this type of leak
and must free the reserved qgroup data. Because it is already an error
path, I opted not to handle the possible errors in
btrfs_free_qgroup_data.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Assign linear_pitch_alignment even for VM
[Description]
Assign linear_pitch_alignment so we don't cause a divide by 0
error in VM environments
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Ensure index calculation will not overflow
[WHY & HOW]
Make sure vmid0p72_idx, vnom0p8_idx and vmax0p9_idx calculation will
never overflow and exceess array size.
This fixes 3 OVERRUN and 1 INTEGER_OVERFLOW issues reported by Coverity.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Fix null pointer dereference in trace
ucsi_register_altmode checks IS_ERR for the alt pointer and treats
NULL as valid. When CONFIG_TYPEC_DP_ALTMODE is not enabled,
ucsi_register_displayport returns NULL which causes a NULL pointer
dereference in trace. Rather than return NULL, call
typec_port_register_altmode to register DisplayPort alternate mode
as a non-controllable mode when CONFIG_TYPEC_DP_ALTMODE is not enabled.
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Don't overmap identity VRAM mapping
Overmapping the identity VRAM mapping is triggering hardware bugs on
certain platforms. Use 2M pages for the last unaligned (to 1G) VRAM
chunk.
v2:
- Always use 2M pages for last chunk (Fei Yang)
- break loop when 2M pages are used
- Add assert for usable_size being 2M aligned
v3:
- Fix checkpatch
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: SHAMPO, Fix incorrect page release
Under the following conditions:
1) No skb created yet
2) header_size == 0 (no SHAMPO header)
3) header_index + 1 % MLX5E_SHAMPO_WQ_HEADER_PER_PAGE == 0 (this is the
last page fragment of a SHAMPO header page)
a new skb is formed with a page that is NOT a SHAMPO header page (it
is a regular data page). Further down in the same function
(mlx5e_handle_rx_cqe_mpwrq_shampo()), a SHAMPO header page from
header_index is released. This is wrong and it leads to SHAMPO header
pages being released more than once.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: altera-msgdma: properly free descriptor in msgdma_free_descriptor
Remove list_del call in msgdma_chan_desc_cleanup, this should be the role
of msgdma_free_descriptor. In consequence replace list_add_tail with
list_move_tail in msgdma_free_descriptor.
This fixes the path:
msgdma_free_chan_resources -> msgdma_free_descriptors ->
msgdma_free_desc_list -> msgdma_free_descriptor
which does not correctly free the descriptors as first nodes were not
removed from the list.
In the Linux kernel, the following vulnerability has been resolved:
driver: iio: add missing checks on iio_info's callback access
Some callbacks from iio_info structure are accessed without any check, so
if a driver doesn't implement them trying to access the corresponding
sysfs entries produce a kernel oops such as:
[ 2203.527791] Unable to handle kernel NULL pointer dereference at virtual address 00000000 when execute
[...]
[ 2203.783416] Call trace:
[ 2203.783429] iio_read_channel_info_avail from dev_attr_show+0x18/0x48
[ 2203.789807] dev_attr_show from sysfs_kf_seq_show+0x90/0x120
[ 2203.794181] sysfs_kf_seq_show from seq_read_iter+0xd0/0x4e4
[ 2203.798555] seq_read_iter from vfs_read+0x238/0x2a0
[ 2203.802236] vfs_read from ksys_read+0xa4/0xd4
[ 2203.805385] ksys_read from ret_fast_syscall+0x0/0x54
[ 2203.809135] Exception stack(0xe0badfa8 to 0xe0badff0)
[ 2203.812880] dfa0: 00000003 b6f10f80 00000003 b6eab000 00020000 00000000
[ 2203.819746] dfc0: 00000003 b6f10f80 7ff00000 00000003 00000003 00000000 00020000 00000000
[ 2203.826619] dfe0: b6e1bc88 bed80958 b6e1bc94 b6e1bcb0
[ 2203.830363] Code: bad PC value
[ 2203.832695] ---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Skip wbscl_set_scaler_filter if filter is null
Callers can pass null in filter (i.e. from returned from the function
wbscl_get_filter_coeffs_16p) and a null check is added to ensure that is
not the case.
This fixes 4 NULL_RETURNS issues reported by Coverity.
An authentication issue was addressed with improved state management. This issue is fixed in iOS 18 and iPadOS 18. Private Browsing tabs may be accessed without authentication.
An integer overflow was addressed through improved input validation. This issue is fixed in visionOS 2, watchOS 11, macOS Sequoia 15, iOS 18 and iPadOS 18, tvOS 18. Processing maliciously crafted web content may lead to an unexpected process crash.
This issue was addressed through improved state management. This issue is fixed in iOS 17.7 and iPadOS 17.7, Xcode 16, visionOS 2, watchOS 11, macOS Sequoia 15, iOS 18 and iPadOS 18, tvOS 18. An app may gain unauthorized access to Bluetooth.
A path handling issue was addressed with improved validation. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to read arbitrary files.
A permissions issue was addressed with additional restrictions. This issue is fixed in macOS Sequoia 15. An app may be able to access protected user data.
A cross-origin issue existed with "iframe" elements. This was addressed with improved tracking of security origins. This issue is fixed in Safari 18, visionOS 2, watchOS 11, macOS Sequoia 15, iOS 18 and iPadOS 18, tvOS 18. A malicious website may exfiltrate data cross-origin.
An access issue was addressed with additional sandbox restrictions. This issue is fixed in macOS Sequoia 15. An app may be able to access protected user data.
A permissions issue was addressed with additional restrictions. This issue is fixed in macOS Ventura 13.7, iOS 17.7 and iPadOS 17.7, iOS 18 and iPadOS 18, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to access user-sensitive data.
A logic error was addressed with improved error handling. This issue is fixed in macOS Ventura 13.7, iOS 17.7 and iPadOS 17.7, visionOS 2, watchOS 11, macOS Sequoia 15, iOS 18 and iPadOS 18, macOS Sonoma 14.7, tvOS 18. An app may be able to cause a denial-of-service.
This issue was addressed with improved redaction of sensitive information. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to access sensitive data logged when a shortcut fails to launch another app.
An issue was addressed with improved handling of temporary files. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to read sensitive location information.
This issue was addressed with improved validation of symlinks. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to modify protected parts of the file system.
A privacy issue was addressed by removing sensitive data. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to access user-sensitive data.
An out-of-bounds access issue was addressed with improved bounds checking. This issue is fixed in macOS Ventura 13.7, iOS 17.7 and iPadOS 17.7, visionOS 2, watchOS 11, macOS Sequoia 15, iOS 18 and iPadOS 18, macOS Sonoma 14.7, tvOS 18. Processing an image may lead to a denial-of-service.
This issue was addressed through improved state management. This issue is fixed in iOS 17.7 and iPadOS 17.7, iOS 18 and iPadOS 18, watchOS 11. An attacker with physical access to a locked device may be able to Control Nearby Devices via accessibility features.
A privacy issue was addressed by moving sensitive data to a more secure location. This issue is fixed in iOS 18 and iPadOS 18, watchOS 11, macOS Sequoia 15. An app may be able to access user-sensitive data.
The issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.7, iOS 17.7 and iPadOS 17.7, visionOS 2, watchOS 11, macOS Sequoia 15, iOS 18 and iPadOS 18, macOS Sonoma 14.7, tvOS 18. An app may be able to cause unexpected system termination.
A library injection issue was addressed with additional restrictions. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to modify protected parts of the file system.
This issue was addressed by removing the vulnerable code. This issue is fixed in macOS Ventura 13.7, visionOS 2, iOS 18 and iPadOS 18, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to overwrite arbitrary files.
A privacy issue was addressed with improved private data redaction for log entries. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to access user-sensitive data.
The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. A malicious application may be able to access private information.
An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. Processing a maliciously crafted texture may lead to unexpected app termination.
A buffer overflow issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. Processing a maliciously crafted texture may lead to unexpected app termination.
This issue was addressed with improved redaction of sensitive information. This issue is fixed in iOS 17.7 and iPadOS 17.7, macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. A shortcut may output sensitive user data without consent.
A memory initialization issue was addressed with improved memory handling. This issue is fixed in macOS Sonoma 14.7, macOS Sequoia 15. Processing a maliciously crafted file may lead to unexpected app termination.
The issue was addressed with improved permissions logic. This issue is fixed in macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to access user-sensitive data.
A permissions issue was addressed with additional restrictions. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to modify protected parts of the file system.
This issue was addressed through improved state management. This issue is fixed in iOS 18 and iPadOS 18. An app may gain unauthorized access to Local Network.
A permissions issue was addressed with additional restrictions. This issue is fixed in macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to access protected files within an App Sandbox container.
This issue was addressed with improved redaction of sensitive information. This issue is fixed in macOS Sequoia 15. An app may be able to read sensitive location information.
This issue was addressed by removing the vulnerable code. This issue is fixed in macOS Sequoia 15. On MDM managed devices, an app may be able to bypass certain Privacy preferences.