In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion of exclop condition when starting balance
Balance as exclusive state is compatible with paused balance and device
add, which makes some things more complicated. The assertion of valid
states when starting from paused balance needs to take into account two
more states, the combinations can be hit when there are several threads
racing to start balance and device add. This won't typically happen when
the commands are started from command line.
Scenario 1: With exclusive_operation state == BTRFS_EXCLOP_NONE.
Concurrently adding multiple devices to the same mount point and
btrfs_exclop_finish executed finishes before assertion in
btrfs_exclop_balance, exclusive_operation will changed to
BTRFS_EXCLOP_NONE state which lead to assertion failed:
fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD,
in fs/btrfs/ioctl.c:456
Call Trace:
<TASK>
btrfs_exclop_balance+0x13c/0x310
? memdup_user+0xab/0xc0
? PTR_ERR+0x17/0x20
btrfs_ioctl_add_dev+0x2ee/0x320
btrfs_ioctl+0x9d5/0x10d0
? btrfs_ioctl_encoded_write+0xb80/0xb80
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x3c/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Scenario 2: With exclusive_operation state == BTRFS_EXCLOP_BALANCE_PAUSED.
Concurrently adding multiple devices to the same mount point and
btrfs_exclop_balance executed finish before the latter thread execute
assertion in btrfs_exclop_balance, exclusive_operation will changed to
BTRFS_EXCLOP_BALANCE_PAUSED state which lead to assertion failed:
fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
fs_info->exclusive_operation == BTRFS_EXCLOP_NONE,
fs/btrfs/ioctl.c:458
Call Trace:
<TASK>
btrfs_exclop_balance+0x240/0x410
? memdup_user+0xab/0xc0
? PTR_ERR+0x17/0x20
btrfs_ioctl_add_dev+0x2ee/0x320
btrfs_ioctl+0x9d5/0x10d0
? btrfs_ioctl_encoded_write+0xb80/0xb80
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x3c/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
An example of the failed assertion is below, which shows that the
paused balance is also needed to be checked.
root@syzkaller:/home/xsk# ./repro
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
[ 416.611428][ T7970] BTRFS info (device loop0): fs_info exclusive_operation: 0
Failed to add device /dev/vda, errno 14
[ 416.613973][ T7971] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.615456][ T7972] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.617528][ T7973] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.618359][ T7974] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.622589][ T7975] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.624034][ T7976] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.626420][ T7977] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.627643][ T7978] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.629006][ T7979] BTRFS info (device loop0): fs_info exclusive_operation: 3
[ 416.630298][ T7980] BTRFS info (device loop0): fs_info exclusive_operation: 3
Fai
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
staging: r8712: Fix memory leak in _r8712_init_xmit_priv()
In the above mentioned routine, memory is allocated in several places.
If the first succeeds and a later one fails, the routine will leak memory.
This patch fixes commit 2865d42c78a9 ("staging: r8712u: Add the new driver
to the mainline kernel"). A potential memory leak in
r8712_xmit_resource_alloc() is also addressed.
In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix deadlock issue when externel_lb and reset are executed together
When externel_lb and reset are executed together, a deadlock may
occur:
[ 3147.217009] INFO: task kworker/u321:0:7 blocked for more than 120 seconds.
[ 3147.230483] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 3147.238999] task:kworker/u321:0 state:D stack: 0 pid: 7 ppid: 2 flags:0x00000008
[ 3147.248045] Workqueue: hclge hclge_service_task [hclge]
[ 3147.253957] Call trace:
[ 3147.257093] __switch_to+0x7c/0xbc
[ 3147.261183] __schedule+0x338/0x6f0
[ 3147.265357] schedule+0x50/0xe0
[ 3147.269185] schedule_preempt_disabled+0x18/0x24
[ 3147.274488] __mutex_lock.constprop.0+0x1d4/0x5dc
[ 3147.279880] __mutex_lock_slowpath+0x1c/0x30
[ 3147.284839] mutex_lock+0x50/0x60
[ 3147.288841] rtnl_lock+0x20/0x2c
[ 3147.292759] hclge_reset_prepare+0x68/0x90 [hclge]
[ 3147.298239] hclge_reset_subtask+0x88/0xe0 [hclge]
[ 3147.303718] hclge_reset_service_task+0x84/0x120 [hclge]
[ 3147.309718] hclge_service_task+0x2c/0x70 [hclge]
[ 3147.315109] process_one_work+0x1d0/0x490
[ 3147.319805] worker_thread+0x158/0x3d0
[ 3147.324240] kthread+0x108/0x13c
[ 3147.328154] ret_from_fork+0x10/0x18
In externel_lb process, the hns3 driver call napi_disable()
first, then the reset happen, then the restore process of the
externel_lb will fail, and will not call napi_enable(). When
doing externel_lb again, napi_disable() will be double call,
cause a deadlock of rtnl_lock().
This patch use the HNS3_NIC_STATE_DOWN state to protect the
calling of napi_disable() and napi_enable() in externel_lb
process, just as the usage in ndo_stop() and ndo_start().
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: TC, Fix internal port memory leak
The flow rule can be splited, and the extra post_act rules are added
to post_act table. It's possible to trigger memleak when the rule
forwards packets from internal port and over tunnel, in the case that,
for example, CT 'new' state offload is allowed. As int_port object is
assigned to the flow attribute of post_act rule, and its refcnt is
incremented by mlx5e_tc_int_port_get(), but mlx5e_tc_int_port_put() is
not called, the refcnt is never decremented, then int_port is never
freed.
The kmemleak reports the following error:
unreferenced object 0xffff888128204b80 (size 64):
comm "handler20", pid 50121, jiffies 4296973009 (age 642.932s)
hex dump (first 32 bytes):
01 00 00 00 19 00 00 00 03 f0 00 00 04 00 00 00 ................
98 77 67 41 81 88 ff ff 98 77 67 41 81 88 ff ff .wgA.....wgA....
backtrace:
[<00000000e992680d>] kmalloc_trace+0x27/0x120
[<000000009e945a98>] mlx5e_tc_int_port_get+0x3f3/0xe20 [mlx5_core]
[<0000000035a537f0>] mlx5e_tc_add_fdb_flow+0x473/0xcf0 [mlx5_core]
[<0000000070c2cec6>] __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core]
[<000000005cc84048>] mlx5e_configure_flower+0xd40/0x4c40 [mlx5_core]
[<000000004f8a2031>] mlx5e_rep_indr_offload.isra.0+0x10e/0x1c0 [mlx5_core]
[<000000007df797dc>] mlx5e_rep_indr_setup_tc_cb+0x90/0x130 [mlx5_core]
[<0000000016c15cc3>] tc_setup_cb_add+0x1cf/0x410
[<00000000a63305b4>] fl_hw_replace_filter+0x38f/0x670 [cls_flower]
[<000000008bc9e77c>] fl_change+0x1fd5/0x4430 [cls_flower]
[<00000000e7f766e4>] tc_new_tfilter+0x867/0x2010
[<00000000e101c0ef>] rtnetlink_rcv_msg+0x6fc/0x9f0
[<00000000e1111d44>] netlink_rcv_skb+0x12c/0x360
[<0000000082dd6c8b>] netlink_unicast+0x438/0x710
[<00000000fc568f70>] netlink_sendmsg+0x794/0xc50
[<0000000016e92590>] sock_sendmsg+0xc5/0x190
So fix this by moving int_port cleanup code to the flow attribute
free helper, which is used by all the attribute free cases.
In the Linux kernel, the following vulnerability has been resolved:
hwrng: virtio - Fix race on data_avail and actual data
The virtio rng device kicks off a new entropy request whenever the
data available reaches zero. When a new request occurs at the end
of a read operation, that is, when the result of that request is
only needed by the next reader, then there is a race between the
writing of the new data and the next reader.
This is because there is no synchronisation whatsoever between the
writer and the reader.
Fix this by writing data_avail with smp_store_release and reading
it with smp_load_acquire when we first enter read. The subsequent
reads are safe because they're either protected by the first load
acquire, or by the completion mechanism.
Also remove the redundant zeroing of data_idx in random_recv_done
(data_idx must already be zero at this point) and data_avail in
request_entropy (ditto).
In the Linux kernel, the following vulnerability has been resolved:
thermal: of: fix double-free on unregistration
Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal
zone parameters structure"), thermal_zone_device_register() allocates
a copy of the tzp argument and frees it when unregistering, so
thermal_of_zone_register() now ends up leaking its original tzp and
double-freeing the tzp copy. Fix this by locating tzp on stack instead.
In the Linux kernel, the following vulnerability has been resolved:
x86/sev: Make enc_dec_hypercall() accept a size instead of npages
enc_dec_hypercall() accepted a page count instead of a size, which
forced its callers to round up. As a result, non-page aligned
vaddrs caused pages to be spuriously marked as decrypted via the
encryption status hypercall, which in turn caused consistent
corruption of pages during live migration. Live migration requires
accurate encryption status information to avoid migrating pages
from the wrong perspective.
In the Linux kernel, the following vulnerability has been resolved:
net: ipv4: fix one memleak in __inet_del_ifa()
I got the below warning when do fuzzing test:
unregister_netdevice: waiting for bond0 to become free. Usage count = 2
It can be repoduced via:
ip link add bond0 type bond
sysctl -w net.ipv4.conf.bond0.promote_secondaries=1
ip addr add 4.117.174.103/0 scope 0x40 dev bond0
ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0
ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0
ip addr del 4.117.174.103/0 scope 0x40 dev bond0
ip link delete bond0 type bond
In this reproduction test case, an incorrect 'last_prim' is found in
__inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40)
is lost. The memory of the secondary address is leaked and the reference of
in_device and net_device is leaked.
Fix this problem:
Look for 'last_prim' starting at location of the deleted IP and inserting
the promoted IP into the location of 'last_prim'.
In the Linux kernel, the following vulnerability has been resolved:
ionic: remove WARN_ON to prevent panic_on_warn
Remove unnecessary early code development check and the WARN_ON
that it uses. The irq alloc and free paths have long been
cleaned up and this check shouldn't have stuck around so long.
In the Linux kernel, the following vulnerability has been resolved:
PCI/DOE: Fix memory leak with CONFIG_DEBUG_OBJECTS=y
After a pci_doe_task completes, its work_struct needs to be destroyed
to avoid a memory leak with CONFIG_DEBUG_OBJECTS=y.
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: ocb: don't leave if not joined
If there's no OCB state, don't ask the driver/mac80211 to
leave, since that's just confusing. Since set/clear the
chandef state, that's a simple check.
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Disallow unallocated resources to be returned
In the event that the topology requests resources that have not been
created by the system (because they are typically not represented in
dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC
blocks, until their allocation/assignment is being sanity-checked in
"drm/msm/dpu: Reject topologies for which no DSC blocks are available")
remain NULL but will still be returned out of
dpu_rm_get_assigned_resources, where the caller expects to get an array
containing num_blks valid pointers (but instead gets these NULLs).
To prevent this from happening, where null-pointer dereferences
typically result in a hard-to-debug platform lockup, num_blks shouldn't
increase past NULL blocks and will print an error and break instead.
After all, max_blks represents the static size of the maximum number of
blocks whereas the actual amount varies per platform.
^1: which can happen after a git rebase ended up moving additions to
_dpu_cfg to a different struct which has the same patch context.
Patchwork: https://patchwork.freedesktop.org/patch/517636/
In the Linux kernel, the following vulnerability has been resolved:
SMB3: Add missing locks to protect deferred close file list
cifs_del_deferred_close function has a critical section which modifies
the deferred close file list. We must acquire deferred_lock before
calling cifs_del_deferred_close function.
In the Linux kernel, the following vulnerability has been resolved:
arm64: mm: fix VA-range sanity check
Both create_mapping_noalloc() and update_mapping_prot() sanity-check
their 'virt' parameter, but the check itself doesn't make much sense.
The condition used today appears to be a historical accident.
The sanity-check condition:
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
... can only be true for the KASAN shadow region or the module region,
and there's no reason to exclude these specifically for creating and
updateing mappings.
When arm64 support was first upstreamed in commit:
c1cc1552616d0f35 ("arm64: MMU initialisation")
... the condition was:
if (virt < VMALLOC_START) {
[ ... warning here ... ]
return;
}
At the time, VMALLOC_START was the lowest kernel address, and this was
checking whether 'virt' would be translated via TTBR1.
Subsequently in commit:
14c127c957c1c607 ("arm64: mm: Flip kernel VA space")
... the condition was changed to:
if ((virt >= VA_START) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
This appear to have been a thinko. The commit moved the linear map to
the bottom of the kernel address space, with VMALLOC_START being at the
halfway point. The old condition would warn for changes to the linear
map below this, and at the time VA_START was the end of the linear map.
Subsequently we cleaned up the naming of VA_START in commit:
77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END")
... keeping the erroneous condition as:
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
Correct the condition to check against the start of the TTBR1 address
space, which is currently PAGE_OFFSET. This simplifies the logic, and
more clearly matches the "outside kernel range" message in the warning.
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix slab-out-of-bounds read in hdr_delete_de()
Here is a BUG report from syzbot:
BUG: KASAN: slab-out-of-bounds in hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
Read of size 16842960 at addr ffff888079cc0600 by task syz-executor934/3631
Call Trace:
memmove+0x25/0x60 mm/kasan/shadow.c:54
hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
indx_delete_entry+0x74f/0x3670 fs/ntfs3/index.c:2193
ni_remove_name+0x27a/0x980 fs/ntfs3/frecord.c:2910
ntfs_unlink_inode+0x3d4/0x720 fs/ntfs3/inode.c:1712
ntfs_rename+0x41a/0xcb0 fs/ntfs3/namei.c:276
Before using the meta-data in struct INDEX_HDR, we need to
check index header valid or not. Otherwise, the corruptedi
(or malicious) fs image can cause out-of-bounds access which
could make kernel panic.
In the Linux kernel, the following vulnerability has been resolved:
ping: Fix potentail NULL deref for /proc/net/icmp.
After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid
of rwlock"), we use RCU for ping sockets, but we should use spinlock
for /proc/net/icmp to avoid a potential NULL deref mentioned in
the previous patch.
Let's go back to using spinlock there.
Note we can convert ping sockets to use hlist instead of hlist_nulls
because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets.
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix potential use-after-free bug when trimming caps
When trimming the caps and just after the 'session->s_cap_lock' is
released in ceph_iterate_session_caps() the cap maybe removed by
another thread, and when using the stale cap memory in the callbacks
it will trigger use-after-free crash.
We need to check the existence of the cap just after the 'ci->i_ceph_lock'
being acquired. And do nothing if it's already removed.
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_eth_soc: fix possible memory leak in mtk_probe()
If mtk_wed_add_hw() has been called, mtk_wed_exit() needs be called
in error path or removing module to free the memory allocated in
mtk_wed_add_hw().
In the Linux kernel, the following vulnerability has been resolved:
ice: set tx_tstamps when creating new Tx rings via ethtool
When the user changes the number of queues via ethtool, the driver
allocates new rings. This allocation did not initialize tx_tstamps. This
results in the tx_tstamps field being zero (due to kcalloc allocation), and
would result in a NULL pointer dereference when attempting a transmit
timestamp on the new ring.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg()
syzbot is reporting uninit value at ath9k_htc_rx_msg() [1], for
ioctl(USB_RAW_IOCTL_EP_WRITE) can call ath9k_hif_usb_rx_stream() with
pkt_len = 0 but ath9k_hif_usb_rx_stream() uses
__dev_alloc_skb(pkt_len + 32, GFP_ATOMIC) based on an assumption that
pkt_len is valid. As a result, ath9k_hif_usb_rx_stream() allocates skb
with uninitialized memory and ath9k_htc_rx_msg() is reading from
uninitialized memory.
Since bytes accessed by ath9k_htc_rx_msg() is not known until
ath9k_htc_rx_msg() is called, it would be difficult to check minimal valid
pkt_len at "if (pkt_len > 2 * MAX_RX_BUF_SIZE) {" line in
ath9k_hif_usb_rx_stream().
We have two choices. One is to workaround by adding __GFP_ZERO so that
ath9k_htc_rx_msg() sees 0 if pkt_len is invalid. The other is to let
ath9k_htc_rx_msg() validate pkt_len before accessing. This patch chose
the latter.
Note that I'm not sure threshold condition is correct, for I can't find
details on possible packet length used by this protocol.
In the Linux kernel, the following vulnerability has been resolved:
HSI: ssi_protocol: fix potential resource leak in ssip_pn_open()
ssip_pn_open() claims the HSI client's port with hsi_claim_port(). When
hsi_register_port_event() gets some error and returns a negetive value,
the HSI client's port should be released with hsi_release_port().
Fix it by calling hsi_release_port() when hsi_register_port_event() fails.
In the Linux kernel, the following vulnerability has been resolved:
virtio-crypto: fix memory leak in virtio_crypto_alg_skcipher_close_session()
'vc_ctrl_req' is alloced in virtio_crypto_alg_skcipher_close_session(),
and should be freed in the invalid ctrl_status->status error handling
case. Otherwise there is a memory leak.
In the Linux kernel, the following vulnerability has been resolved:
net/ieee802154: don't warn zero-sized raw_sendmsg()
syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1],
for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting
__dev_queue_xmit() with skb->len == 0.
Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was
able to return 0, don't call __dev_queue_xmit() if packet length is 0.
----------
#include <sys/socket.h>
#include <netinet/in.h>
int main(int argc, char *argv[])
{
struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) };
struct iovec iov = { };
struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 };
sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0);
return 0;
}
----------
Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't
redirect packets with invalid pkt_len") should be reverted, for
skb->len == 0 was acceptable for at least PF_IEEE802154 socket.
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: Fix use-after-free during usb config switch
In the process of switching USB config from rndis to other config,
if the hardware does not support the ->pullup callback, or the
hardware encounters a low probability fault, both of them may cause
the ->pullup callback to fail, which will then cause a system panic
(use after free).
The gadget drivers sometimes need to be unloaded regardless of the
hardware's behavior.
Analysis as follows:
=======================================================================
(1) write /config/usb_gadget/g1/UDC "none"
gether_disconnect+0x2c/0x1f8
rndis_disable+0x4c/0x74
composite_disconnect+0x74/0xb0
configfs_composite_disconnect+0x60/0x7c
usb_gadget_disconnect+0x70/0x124
usb_gadget_unregister_driver+0xc8/0x1d8
gadget_dev_desc_UDC_store+0xec/0x1e4
(2) rm /config/usb_gadget/g1/configs/b.1/f1
rndis_deregister+0x28/0x54
rndis_free+0x44/0x7c
usb_put_function+0x14/0x1c
config_usb_cfg_unlink+0xc4/0xe0
configfs_unlink+0x124/0x1c8
vfs_unlink+0x114/0x1dc
(3) rmdir /config/usb_gadget/g1/functions/rndis.gs4
panic+0x1fc/0x3d0
do_page_fault+0xa8/0x46c
do_mem_abort+0x3c/0xac
el1_sync_handler+0x40/0x78
0xffffff801138f880
rndis_close+0x28/0x34
eth_stop+0x74/0x110
dev_close_many+0x48/0x194
rollback_registered_many+0x118/0x814
unregister_netdev+0x20/0x30
gether_cleanup+0x1c/0x38
rndis_attr_release+0xc/0x14
kref_put+0x74/0xb8
configfs_rmdir+0x314/0x374
If gadget->ops->pullup() return an error, function rndis_close() will be
called, then it will causes a use-after-free problem.
=======================================================================
In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: smsm: Fix refcount leak bugs in qcom_smsm_probe()
There are two refcount leak bugs in qcom_smsm_probe():
(1) The 'local_node' is escaped out from for_each_child_of_node() as
the break of iteration, we should call of_node_put() for it in error
path or when it is not used anymore.
(2) The 'node' is escaped out from for_each_available_child_of_node()
as the 'goto', we should call of_node_put() for it in goto target.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host
SDIO may need addtional 511 bytes to align bus operation. If the tailroom
of this skb is not big enough, we would access invalid memory region.
For low level operation, increase skb size to keep valid memory access in
SDIO host.
Error message:
[69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0
[69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451
[69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1
[69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300]
[69.951] Call Trace:
[69.951] <TASK>
[69.952] dump_stack_lvl+0x49/0x63
[69.952] print_report+0x171/0x4a8
[69.952] kasan_report+0xb4/0x130
[69.952] kasan_check_range+0x149/0x1e0
[69.952] memcpy+0x24/0x70
[69.952] sg_copy_buffer+0xe9/0x1a0
[69.952] sg_copy_to_buffer+0x12/0x20
[69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300]
[69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300]
[69.952] process_one_work+0x7ee/0x1320
[69.952] worker_thread+0x53c/0x1240
[69.952] kthread+0x2b8/0x370
[69.952] ret_from_fork+0x1f/0x30
[69.952] </TASK>
[69.952] Allocated by task 854:
[69.952] kasan_save_stack+0x26/0x50
[69.952] kasan_set_track+0x25/0x30
[69.952] kasan_save_alloc_info+0x1b/0x30
[69.952] __kasan_kmalloc+0x87/0xa0
[69.952] __kmalloc_node_track_caller+0x63/0x150
[69.952] kmalloc_reserve+0x31/0xd0
[69.952] __alloc_skb+0xfc/0x2b0
[69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76]
[69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76]
[69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76]
[69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib]
[69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib]
[69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common]
[69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s]
[69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common]
[69.953] process_one_work+0x7ee/0x1320
[69.953] worker_thread+0x53c/0x1240
[69.953] kthread+0x2b8/0x370
[69.953] ret_from_fork+0x1f/0x30
[69.953] The buggy address belongs to the object at ffff88811c9ce800
which belongs to the cache kmalloc-2k of size 2048
[69.953] The buggy address is located 0 bytes to the right of
2048-byte region [ffff88811c9ce800, ffff88811c9cf000)
[69.953] Memory state around the buggy address:
[69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ^
[69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: Delay the unmapping of the buffer
On WCN3990, we are seeing a rare scenario where copy engine hardware is
sending a copy complete interrupt to the host driver while still
processing the buffer that the driver has sent, this is leading into an
SMMU fault triggering kernel panic. This is happening on copy engine
channel 3 (CE3) where the driver normally enqueues WMI commands to the
firmware. Upon receiving a copy complete interrupt, host driver will
immediately unmap and frees the buffer presuming that hardware has
processed the buffer. In the issue case, upon receiving copy complete
interrupt, host driver will unmap and free the buffer but since hardware
is still accessing the buffer (which in this case got unmapped in
parallel), SMMU hardware will trigger an SMMU fault resulting in a
kernel panic.
In order to avoid this, as a work around, add a delay before unmapping
the copy engine source DMA buffer. This is conditionally done for
WCN3990 and only for the CE3 channel where issue is seen.
Below is the crash signature:
wifi smmu error: kernel: [ 10.120965] arm-smmu 15000000.iommu: Unhandled
context fault: fsr=0x402, iova=0x7fdfd8ac0,
fsynr=0x500003,cbfrsynra=0xc1, cb=6 arm-smmu 15000000.iommu: Unhandled
context fault:fsr=0x402, iova=0x7fe06fdc0, fsynr=0x710003,
cbfrsynra=0xc1, cb=6 qcom-q6v5-mss 4080000.remoteproc: fatal error
received: err_qdi.c:1040:EF:wlan_process:0x1:WLAN RT:0x2091:
cmnos_thread.c:3998:Asserted in copy_engine.c:AXI_ERROR_DETECTED:2149
remoteproc remoteproc0: crash detected in
4080000.remoteproc: type fatal error <3> remoteproc remoteproc0:
handling crash #1 in 4080000.remoteproc
pc : __arm_lpae_unmap+0x500/0x514
lr : __arm_lpae_unmap+0x4bc/0x514
sp : ffffffc011ffb530
x29: ffffffc011ffb590 x28: 0000000000000000
x27: 0000000000000000 x26: 0000000000000004
x25: 0000000000000003 x24: ffffffc011ffb890
x23: ffffffa762ef9be0 x22: ffffffa77244ef00
x21: 0000000000000009 x20: 00000007fff7c000
x19: 0000000000000003 x18: 0000000000000000
x17: 0000000000000004 x16: ffffffd7a357d9f0
x15: 0000000000000000 x14: 00fd5d4fa7ffffff
x13: 000000000000000e x12: 0000000000000000
x11: 00000000ffffffff x10: 00000000fffffe00
x9 : 000000000000017c x8 : 000000000000000c
x7 : 0000000000000000 x6 : ffffffa762ef9000
x5 : 0000000000000003 x4 : 0000000000000004
x3 : 0000000000001000 x2 : 00000007fff7c000
x1 : ffffffc011ffb890 x0 : 0000000000000000 Call trace:
__arm_lpae_unmap+0x500/0x514
__arm_lpae_unmap+0x4bc/0x514
__arm_lpae_unmap+0x4bc/0x514
arm_lpae_unmap_pages+0x78/0xa4
arm_smmu_unmap_pages+0x78/0x104
__iommu_unmap+0xc8/0x1e4
iommu_unmap_fast+0x38/0x48
__iommu_dma_unmap+0x84/0x104
iommu_dma_free+0x34/0x50
dma_free_attrs+0xa4/0xd0
ath10k_htt_rx_free+0xc4/0xf4 [ath10k_core] ath10k_core_stop+0x64/0x7c
[ath10k_core]
ath10k_halt+0x11c/0x180 [ath10k_core]
ath10k_stop+0x54/0x94 [ath10k_core]
drv_stop+0x48/0x1c8 [mac80211]
ieee80211_do_open+0x638/0x77c [mac80211] ieee80211_open+0x48/0x5c
[mac80211]
__dev_open+0xb4/0x174
__dev_change_flags+0xc4/0x1dc
dev_change_flags+0x3c/0x7c
devinet_ioctl+0x2b4/0x580
inet_ioctl+0xb0/0x1b4
sock_do_ioctl+0x4c/0x16c
compat_ifreq_ioctl+0x1cc/0x35c
compat_sock_ioctl+0x110/0x2ac
__arm64_compat_sys_ioctl+0xf4/0x3e0
el0_svc_common+0xb4/0x17c
el0_svc_compat_handler+0x2c/0x58
el0_svc_compat+0x8/0x2c
Tested-on: WCN3990 hw1.0 SNOC WLAN.HL.2.0-01387-QCAHLSWMTPLZ-1
In the Linux kernel, the following vulnerability has been resolved:
selinux: enable use of both GFP_KERNEL and GFP_ATOMIC in convert_context()
The following warning was triggered on a hardware environment:
SELinux: Converting 162 SID table entries...
BUG: sleeping function called from invalid context at
__might_sleep+0x60/0x74 0x0
in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 5943, name: tar
CPU: 7 PID: 5943 Comm: tar Tainted: P O 5.10.0 #1
Call trace:
dump_backtrace+0x0/0x1c8
show_stack+0x18/0x28
dump_stack+0xe8/0x15c
___might_sleep+0x168/0x17c
__might_sleep+0x60/0x74
__kmalloc_track_caller+0xa0/0x7dc
kstrdup+0x54/0xac
convert_context+0x48/0x2e4
sidtab_context_to_sid+0x1c4/0x36c
security_context_to_sid_core+0x168/0x238
security_context_to_sid_default+0x14/0x24
inode_doinit_use_xattr+0x164/0x1e4
inode_doinit_with_dentry+0x1c0/0x488
selinux_d_instantiate+0x20/0x34
security_d_instantiate+0x70/0xbc
d_splice_alias+0x4c/0x3c0
ext4_lookup+0x1d8/0x200 [ext4]
__lookup_slow+0x12c/0x1e4
walk_component+0x100/0x200
path_lookupat+0x88/0x118
filename_lookup+0x98/0x130
user_path_at_empty+0x48/0x60
vfs_statx+0x84/0x140
vfs_fstatat+0x20/0x30
__se_sys_newfstatat+0x30/0x74
__arm64_sys_newfstatat+0x1c/0x2c
el0_svc_common.constprop.0+0x100/0x184
do_el0_svc+0x1c/0x2c
el0_svc+0x20/0x34
el0_sync_handler+0x80/0x17c
el0_sync+0x13c/0x140
SELinux: Context system_u:object_r:pssp_rsyslog_log_t:s0:c0 is
not valid (left unmapped).
It was found that within a critical section of spin_lock_irqsave in
sidtab_context_to_sid(), convert_context() (hooked by
sidtab_convert_params.func) might cause the process to sleep via
allocating memory with GFP_KERNEL, which is problematic.
As Ondrej pointed out [1], convert_context()/sidtab_convert_params.func
has another caller sidtab_convert_tree(), which is okay with GFP_KERNEL.
Therefore, fix this problem by adding a gfp_t argument for
convert_context()/sidtab_convert_params.func and pass GFP_KERNEL/_ATOMIC
properly in individual callers.
[PM: wrap long BUG() output lines, tweak subject line]
In the Linux kernel, the following vulnerability has been resolved:
ASoC: da7219: Fix an error handling path in da7219_register_dai_clks()
If clk_hw_register() fails, the corresponding clk should not be
unregistered.
To handle errors from loops, clean up partial iterations before doing the
goto. So add a clk_hw_unregister().
Then use a while (--i >= 0) loop in the unwind section.
In the Linux kernel, the following vulnerability has been resolved:
mrp: introduce active flags to prevent UAF when applicant uninit
The caller of del_timer_sync must prevent restarting of the timer, If
we have no this synchronization, there is a small probability that the
cancellation will not be successful.
And syzbot report the fellowing crash:
==================================================================
BUG: KASAN: use-after-free in hlist_add_head include/linux/list.h:929 [inline]
BUG: KASAN: use-after-free in enqueue_timer+0x18/0xa4 kernel/time/timer.c:605
Write at addr f9ff000024df6058 by task syz-fuzzer/2256
Pointer tag: [f9], memory tag: [fe]
CPU: 1 PID: 2256 Comm: syz-fuzzer Not tainted 6.1.0-rc5-syzkaller-00008-
ge01d50cbd6ee #0
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace.part.0+0xe0/0xf0 arch/arm64/kernel/stacktrace.c:156
dump_backtrace arch/arm64/kernel/stacktrace.c:162 [inline]
show_stack+0x18/0x40 arch/arm64/kernel/stacktrace.c:163
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x68/0x84 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:284 [inline]
print_report+0x1a8/0x4a0 mm/kasan/report.c:395
kasan_report+0x94/0xb4 mm/kasan/report.c:495
__do_kernel_fault+0x164/0x1e0 arch/arm64/mm/fault.c:320
do_bad_area arch/arm64/mm/fault.c:473 [inline]
do_tag_check_fault+0x78/0x8c arch/arm64/mm/fault.c:749
do_mem_abort+0x44/0x94 arch/arm64/mm/fault.c:825
el1_abort+0x40/0x60 arch/arm64/kernel/entry-common.c:367
el1h_64_sync_handler+0xd8/0xe4 arch/arm64/kernel/entry-common.c:427
el1h_64_sync+0x64/0x68 arch/arm64/kernel/entry.S:576
hlist_add_head include/linux/list.h:929 [inline]
enqueue_timer+0x18/0xa4 kernel/time/timer.c:605
mod_timer+0x14/0x20 kernel/time/timer.c:1161
mrp_periodic_timer_arm net/802/mrp.c:614 [inline]
mrp_periodic_timer+0xa0/0xc0 net/802/mrp.c:627
call_timer_fn.constprop.0+0x24/0x80 kernel/time/timer.c:1474
expire_timers+0x98/0xc4 kernel/time/timer.c:1519
To fix it, we can introduce a new active flags to make sure the timer will
not restart.
Mattermost versions 11.1.x <= 11.1.0, 11.0.x <= 11.0.5, 10.12.x <= 10.12.3, 10.11.x <= 10.11.7 fail to verify that post actions invoking /share-issue-publicly were created by the Jira plugin which allowed a malicious Mattermost user to exfiltrate Jira tickets when victim users interacted with affected posts
Mattermost versions 11.1.x <= 11.1.0, 11.0.x <= 11.0.5, 10.12.x <= 10.12.3, 10.11.x <= 10.11.7 fails to validate user channel membership when attaching Mattermost posts as comments to Jira issues, which allows an authenticated attacker with access to the Jira plugin to read post content and attachments from channels they do not have access to.
The Gravity Forms WordPress plugin before 2.9.23.1 does not properly prevent users from uploading dangerous files through its chunked upload functionality, allowing attackers to upload PHP files to affected sites and achieve Remote Code Execution, granted they can discover or enumerate the upload path.
OpenXRechnungToolbox through 2024-10-05-3.0.0 before 6c50e89 allows XXE because the disallow-doctype-decl feature is not enabled in visualization/VisualizerImpl.java.
Authorization bypass vulnerability in Hitachi Infrastructure Analytics Advisor (Data Center Analytics component) and Hitachi Ops Center Analyzer (Hitachi Ops Center Analyzer detail view component).This issue affects Hitachi Infrastructure Analytics Advisor:; Hitachi Ops Center Analyzer: from 10.0.0-00 before 11.0.5-00.
Cross-site Scripting vulnerability in Hitachi Infrastructure Analytics Advisor (Data Center Analytics component) and Hitachi Ops Center Analyzer (Hitachi Ops Center Analyzer detail view component).This issue affects Hitachi Infrastructure Analytics Advisor:; Hitachi Ops Center Analyzer: from 10.0.0-00 before 11.0.5-00.
The Print Invoice & Delivery Notes for WooCommerce plugin for WordPress is vulnerable to Remote Code Execution in all versions up to, and including, 5.8.0 via the 'WooCommerce_Delivery_Notes::update' function. This is due to missing capability check in the 'WooCommerce_Delivery_Notes::update' function, PHP enabled in Dompdf, and missing escape in the 'template.php' file. This makes it possible for unauthenticated attackers to execute code on the server.