In the Linux kernel, the following vulnerability has been resolved:
arm64: ftrace: consistently handle PLTs.
Sometimes it is necessary to use a PLT entry to call an ftrace
trampoline. This is handled by ftrace_make_call() and ftrace_make_nop(),
with each having *almost* identical logic, but this is not handled by
ftrace_modify_call() since its introduction in commit:
3b23e4991fb66f6d ("arm64: implement ftrace with regs")
Due to this, if we ever were to call ftrace_modify_call() for a callsite
which requires a PLT entry for a trampoline, then either:
a) If the old addr requires a trampoline, ftrace_modify_call() will use
an out-of-range address to generate the 'old' branch instruction.
This will result in warnings from aarch64_insn_gen_branch_imm() and
ftrace_modify_code(), and no instructions will be modified. As
ftrace_modify_call() will return an error, this will result in
subsequent internal ftrace errors.
b) If the old addr does not require a trampoline, but the new addr does,
ftrace_modify_call() will use an out-of-range address to generate the
'new' branch instruction. This will result in warnings from
aarch64_insn_gen_branch_imm(), and ftrace_modify_code() will replace
the 'old' branch with a BRK. This will result in a kernel panic when
this BRK is later executed.
Practically speaking, case (a) is vastly more likely than case (b), and
typically this will result in internal ftrace errors that don't
necessarily affect the rest of the system. This can be demonstrated with
an out-of-tree test module which triggers ftrace_modify_call(), e.g.
| # insmod test_ftrace.ko
| test_ftrace: Function test_function raw=0xffffb3749399201c, callsite=0xffffb37493992024
| branch_imm_common: offset out of range
| branch_imm_common: offset out of range
| ------------[ ftrace bug ]------------
| ftrace failed to modify
| [<ffffb37493992024>] test_function+0x8/0x38 [test_ftrace]
| actual: 1d:00:00:94
| Updating ftrace call site to call a different ftrace function
| ftrace record flags: e0000002
| (2) R
| expected tramp: ffffb374ae42ed54
| ------------[ cut here ]------------
| WARNING: CPU: 0 PID: 165 at kernel/trace/ftrace.c:2085 ftrace_bug+0x280/0x2b0
| Modules linked in: test_ftrace(+)
| CPU: 0 PID: 165 Comm: insmod Not tainted 5.19.0-rc2-00002-g4d9ead8b45ce #13
| Hardware name: linux,dummy-virt (DT)
| pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : ftrace_bug+0x280/0x2b0
| lr : ftrace_bug+0x280/0x2b0
| sp : ffff80000839ba00
| x29: ffff80000839ba00 x28: 0000000000000000 x27: ffff80000839bcf0
| x26: ffffb37493994180 x25: ffffb374b0991c28 x24: ffffb374b0d70000
| x23: 00000000ffffffea x22: ffffb374afcc33b0 x21: ffffb374b08f9cc8
| x20: ffff572b8462c000 x19: ffffb374b08f9000 x18: ffffffffffffffff
| x17: 6c6c6163202c6331 x16: ffffb374ae5ad110 x15: ffffb374b0d51ee4
| x14: 0000000000000000 x13: 3435646532346561 x12: 3437336266666666
| x11: 203a706d61727420 x10: 6465746365707865 x9 : ffffb374ae5149e8
| x8 : 336266666666203a x7 : 706d617274206465 x6 : 00000000fffff167
| x5 : ffff572bffbc4a08 x4 : 00000000fffff167 x3 : 0000000000000000
| x2 : 0000000000000000 x1 : ffff572b84461e00 x0 : 0000000000000022
| Call trace:
| ftrace_bug+0x280/0x2b0
| ftrace_replace_code+0x98/0xa0
| ftrace_modify_all_code+0xe0/0x144
| arch_ftrace_update_code+0x14/0x20
| ftrace_startup+0xf8/0x1b0
| register_ftrace_function+0x38/0x90
| test_ftrace_init+0xd0/0x1000 [test_ftrace]
| do_one_initcall+0x50/0x2b0
| do_init_module+0x50/0x1f0
| load_module+0x17c8/0x1d64
| __do_sys_finit_module+0xa8/0x100
| __arm64_sys_finit_module+0x2c/0x3c
| invoke_syscall+0x50/0x120
| el0_svc_common.constprop.0+0xdc/0x100
| do_el0_svc+0x3c/0xd0
| el0_svc+0x34/0xb0
| el0t_64_sync_handler+0xbc/0x140
| el0t_64_sync+0x18c/0x190
| ---[ end trace 0000000000000000 ]---
We can solve this by consistently determining whether to use a PLT entry
for an address.
Note that since (the earlier) commit:
f1a54ae9
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
block: Fix handling of offline queues in blk_mq_alloc_request_hctx()
This patch prevents that test nvme/004 triggers the following:
UBSAN: array-index-out-of-bounds in block/blk-mq.h:135:9
index 512 is out of range for type 'long unsigned int [512]'
Call Trace:
show_stack+0x52/0x58
dump_stack_lvl+0x49/0x5e
dump_stack+0x10/0x12
ubsan_epilogue+0x9/0x3b
__ubsan_handle_out_of_bounds.cold+0x44/0x49
blk_mq_alloc_request_hctx+0x304/0x310
__nvme_submit_sync_cmd+0x70/0x200 [nvme_core]
nvmf_connect_io_queue+0x23e/0x2a0 [nvme_fabrics]
nvme_loop_connect_io_queues+0x8d/0xb0 [nvme_loop]
nvme_loop_create_ctrl+0x58e/0x7d0 [nvme_loop]
nvmf_create_ctrl+0x1d7/0x4d0 [nvme_fabrics]
nvmf_dev_write+0xae/0x111 [nvme_fabrics]
vfs_write+0x144/0x560
ksys_write+0xb7/0x140
__x64_sys_write+0x42/0x50
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic/realview: Fix refcount leak in realview_gic_of_init
of_find_matching_node_and_match() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
irqchip/apple-aic: Fix refcount leak in aic_of_ic_init
of_get_child_by_name() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
irqchip/apple-aic: Fix refcount leak in build_fiq_affinity
of_find_node_by_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3: Fix error handling in gic_populate_ppi_partitions
of_get_child_by_name() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
When kcalloc fails, it missing of_node_put() and results in refcount
leak. Fix this by goto out_put_node label.
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3: Fix refcount leak in gic_populate_ppi_partitions
of_find_node_by_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
irqchip/realtek-rtl: Fix refcount leak in map_interrupts
of_find_node_by_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
This function doesn't call of_node_put() in error path.
Call of_node_put() directly after of_property_read_u32() to cover
both normal path and error path.
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc2: Fix memory leak in dwc2_hcd_init
usb_create_hcd will alloc memory for hcd, and we should
call usb_put_hcd to free it when platform_get_resource()
fails to prevent memory leak.
goto error2 label instead error1 to fix this.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: lpc32xx_udc: Fix refcount leak in lpc32xx_udc_probe
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
of_node_put() will check NULL pointer.
In the Linux kernel, the following vulnerability has been resolved:
dm mirror log: round up region bitmap size to BITS_PER_LONG
The code in dm-log rounds up bitset_size to 32 bits. It then uses
find_next_zero_bit_le on the allocated region. find_next_zero_bit_le
accesses the bitmap using unsigned long pointers. So, on 64-bit
architectures, it may access 4 bytes beyond the allocated size.
Fix this bug by rounding up bitset_size to BITS_PER_LONG.
This bug was found by running the lvm2 testsuite with kasan.
In the Linux kernel, the following vulnerability has been resolved:
cfi: Fix __cfi_slowpath_diag RCU usage with cpuidle
RCU_NONIDLE usage during __cfi_slowpath_diag can result in an invalid
RCU state in the cpuidle code path:
WARNING: CPU: 1 PID: 0 at kernel/rcu/tree.c:613 rcu_eqs_enter+0xe4/0x138
...
Call trace:
rcu_eqs_enter+0xe4/0x138
rcu_idle_enter+0xa8/0x100
cpuidle_enter_state+0x154/0x3a8
cpuidle_enter+0x3c/0x58
do_idle.llvm.6590768638138871020+0x1f4/0x2ec
cpu_startup_entry+0x28/0x2c
secondary_start_kernel+0x1b8/0x220
__secondary_switched+0x94/0x98
Instead, call rcu_irq_enter/exit to wake up RCU only when needed and
disable interrupts for the entire CFI shadow/module check when we do.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug_on ext4_mb_use_inode_pa
Hulk Robot reported a BUG_ON:
==================================================================
kernel BUG at fs/ext4/mballoc.c:3211!
[...]
RIP: 0010:ext4_mb_mark_diskspace_used.cold+0x85/0x136f
[...]
Call Trace:
ext4_mb_new_blocks+0x9df/0x5d30
ext4_ext_map_blocks+0x1803/0x4d80
ext4_map_blocks+0x3a4/0x1a10
ext4_writepages+0x126d/0x2c30
do_writepages+0x7f/0x1b0
__filemap_fdatawrite_range+0x285/0x3b0
file_write_and_wait_range+0xb1/0x140
ext4_sync_file+0x1aa/0xca0
vfs_fsync_range+0xfb/0x260
do_fsync+0x48/0xa0
[...]
==================================================================
Above issue may happen as follows:
-------------------------------------
do_fsync
vfs_fsync_range
ext4_sync_file
file_write_and_wait_range
__filemap_fdatawrite_range
do_writepages
ext4_writepages
mpage_map_and_submit_extent
mpage_map_one_extent
ext4_map_blocks
ext4_mb_new_blocks
ext4_mb_normalize_request
>>> start + size <= ac->ac_o_ex.fe_logical
ext4_mb_regular_allocator
ext4_mb_simple_scan_group
ext4_mb_use_best_found
ext4_mb_new_preallocation
ext4_mb_new_inode_pa
ext4_mb_use_inode_pa
>>> set ac->ac_b_ex.fe_len <= 0
ext4_mb_mark_diskspace_used
>>> BUG_ON(ac->ac_b_ex.fe_len <= 0);
we can easily reproduce this problem with the following commands:
`fallocate -l100M disk`
`mkfs.ext4 -b 1024 -g 256 disk`
`mount disk /mnt`
`fsstress -d /mnt -l 0 -n 1000 -p 1`
The size must be smaller than or equal to EXT4_BLOCKS_PER_GROUP.
Therefore, "start + size <= ac->ac_o_ex.fe_logical" may occur
when the size is truncated. So start should be the start position of
the group where ac_o_ex.fe_logical is located after alignment.
In addition, when the value of fe_logical or EXT4_BLOCKS_PER_GROUP
is very large, the value calculated by start_off is more accurate.
In the Linux kernel, the following vulnerability has been resolved:
ext4: add reserved GDT blocks check
We capture a NULL pointer issue when resizing a corrupt ext4 image which
is freshly clear resize_inode feature (not run e2fsck). It could be
simply reproduced by following steps. The problem is because of the
resize_inode feature was cleared, and it will convert the filesystem to
meta_bg mode in ext4_resize_fs(), but the es->s_reserved_gdt_blocks was
not reduced to zero, so could we mistakenly call reserve_backup_gdb()
and passing an uninitialized resize_inode to it when adding new group
descriptors.
mkfs.ext4 /dev/sda 3G
tune2fs -O ^resize_inode /dev/sda #forget to run requested e2fsck
mount /dev/sda /mnt
resize2fs /dev/sda 8G
========
BUG: kernel NULL pointer dereference, address: 0000000000000028
CPU: 19 PID: 3243 Comm: resize2fs Not tainted 5.18.0-rc7-00001-gfde086c5ebfd #748
...
RIP: 0010:ext4_flex_group_add+0xe08/0x2570
...
Call Trace:
<TASK>
ext4_resize_fs+0xbec/0x1660
__ext4_ioctl+0x1749/0x24e0
ext4_ioctl+0x12/0x20
__x64_sys_ioctl+0xa6/0x110
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f2dd739617b
========
The fix is simple, add a check in ext4_resize_begin() to make sure that
the es->s_reserved_gdt_blocks is zero when the resize_inode feature is
disabled.
In the Linux kernel, the following vulnerability has been resolved:
zonefs: fix zonefs_iomap_begin() for reads
If a readahead is issued to a sequential zone file with an offset
exactly equal to the current file size, the iomap type is set to
IOMAP_UNWRITTEN, which will prevent an IO, but the iomap length is
calculated as 0. This causes a WARN_ON() in iomap_iter():
[17309.548939] WARNING: CPU: 3 PID: 2137 at fs/iomap/iter.c:34 iomap_iter+0x9cf/0xe80
[...]
[17309.650907] RIP: 0010:iomap_iter+0x9cf/0xe80
[...]
[17309.754560] Call Trace:
[17309.757078] <TASK>
[17309.759240] ? lock_is_held_type+0xd8/0x130
[17309.763531] iomap_readahead+0x1a8/0x870
[17309.767550] ? iomap_read_folio+0x4c0/0x4c0
[17309.771817] ? lockdep_hardirqs_on_prepare+0x400/0x400
[17309.778848] ? lock_release+0x370/0x750
[17309.784462] ? folio_add_lru+0x217/0x3f0
[17309.790220] ? reacquire_held_locks+0x4e0/0x4e0
[17309.796543] read_pages+0x17d/0xb60
[17309.801854] ? folio_add_lru+0x238/0x3f0
[17309.807573] ? readahead_expand+0x5f0/0x5f0
[17309.813554] ? policy_node+0xb5/0x140
[17309.819018] page_cache_ra_unbounded+0x27d/0x450
[17309.825439] filemap_get_pages+0x500/0x1450
[17309.831444] ? filemap_add_folio+0x140/0x140
[17309.837519] ? lock_is_held_type+0xd8/0x130
[17309.843509] filemap_read+0x28c/0x9f0
[17309.848953] ? zonefs_file_read_iter+0x1ea/0x4d0 [zonefs]
[17309.856162] ? trace_contention_end+0xd6/0x130
[17309.862416] ? __mutex_lock+0x221/0x1480
[17309.868151] ? zonefs_file_read_iter+0x166/0x4d0 [zonefs]
[17309.875364] ? filemap_get_pages+0x1450/0x1450
[17309.881647] ? __mutex_unlock_slowpath+0x15e/0x620
[17309.888248] ? wait_for_completion_io_timeout+0x20/0x20
[17309.895231] ? lock_is_held_type+0xd8/0x130
[17309.901115] ? lock_is_held_type+0xd8/0x130
[17309.906934] zonefs_file_read_iter+0x356/0x4d0 [zonefs]
[17309.913750] new_sync_read+0x2d8/0x520
[17309.919035] ? __x64_sys_lseek+0x1d0/0x1d0
Furthermore, this causes iomap_readahead() to loop forever as
iomap_readahead_iter() always returns 0, making no progress.
Fix this by treating reads after the file size as access to holes,
setting the iomap type to IOMAP_HOLE, the iomap addr to IOMAP_NULL_ADDR
and using the length argument as is for the iomap length. To simplify
the code with this change, zonefs_iomap_begin() is split into the read
variant, zonefs_read_iomap_begin() and zonefs_read_iomap_ops, and the
write variant, zonefs_write_iomap_begin() and zonefs_write_iomap_ops.
In the Linux kernel, the following vulnerability has been resolved:
9p: fix fid refcount leak in v9fs_vfs_atomic_open_dotl
We need to release directory fid if we fail halfway through open
This fixes fid leaking with xfstests generic 531
In the Linux kernel, the following vulnerability has been resolved:
9p: fix fid refcount leak in v9fs_vfs_get_link
we check for protocol version later than required, after a fid has
been obtained. Just move the version check earlier.
In the Linux kernel, the following vulnerability has been resolved:
scsi: ibmvfc: Store vhost pointer during subcrq allocation
Currently the back pointer from a queue to the vhost adapter isn't set
until after subcrq interrupt registration. The value is available when a
queue is first allocated and can/should be also set for primary and async
queues as well as subcrqs.
This fixes a crash observed during kexec/kdump on Power 9 with legacy XICS
interrupt controller where a pending subcrq interrupt from the previous
kernel can be replayed immediately upon IRQ registration resulting in
dereference of a garbage backpointer in ibmvfc_interrupt_scsi().
Kernel attempted to read user page (58) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000058
Faulting instruction address: 0xc008000003216a08
Oops: Kernel access of bad area, sig: 11 [#1]
...
NIP [c008000003216a08] ibmvfc_interrupt_scsi+0x40/0xb0 [ibmvfc]
LR [c0000000082079e8] __handle_irq_event_percpu+0x98/0x270
Call Trace:
[c000000047fa3d80] [c0000000123e6180] 0xc0000000123e6180 (unreliable)
[c000000047fa3df0] [c0000000082079e8] __handle_irq_event_percpu+0x98/0x270
[c000000047fa3ea0] [c000000008207d18] handle_irq_event+0x98/0x188
[c000000047fa3ef0] [c00000000820f564] handle_fasteoi_irq+0xc4/0x310
[c000000047fa3f40] [c000000008205c60] generic_handle_irq+0x50/0x80
[c000000047fa3f60] [c000000008015c40] __do_irq+0x70/0x1a0
[c000000047fa3f90] [c000000008016d7c] __do_IRQ+0x9c/0x130
[c000000014622f60] [0000000020000000] 0x20000000
[c000000014622ff0] [c000000008016e50] do_IRQ+0x40/0xa0
[c000000014623020] [c000000008017044] replay_soft_interrupts+0x194/0x2f0
[c000000014623210] [c0000000080172a8] arch_local_irq_restore+0x108/0x170
[c000000014623240] [c000000008eb1008] _raw_spin_unlock_irqrestore+0x58/0xb0
[c000000014623270] [c00000000820b12c] __setup_irq+0x49c/0x9f0
[c000000014623310] [c00000000820b7c0] request_threaded_irq+0x140/0x230
[c000000014623380] [c008000003212a50] ibmvfc_register_scsi_channel+0x1e8/0x2f0 [ibmvfc]
[c000000014623450] [c008000003213d1c] ibmvfc_init_sub_crqs+0xc4/0x1f0 [ibmvfc]
[c0000000146234d0] [c0080000032145a8] ibmvfc_reset_crq+0x150/0x210 [ibmvfc]
[c000000014623550] [c0080000032147c8] ibmvfc_init_crq+0x160/0x280 [ibmvfc]
[c0000000146235f0] [c00800000321a9cc] ibmvfc_probe+0x2a4/0x530 [ibmvfc]
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix hang during unmount when block group reclaim task is running
When we start an unmount, at close_ctree(), if we have the reclaim task
running and in the middle of a data block group relocation, we can trigger
a deadlock when stopping an async reclaim task, producing a trace like the
following:
[629724.498185] task:kworker/u16:7 state:D stack: 0 pid:681170 ppid: 2 flags:0x00004000
[629724.499760] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[629724.501267] Call Trace:
[629724.501759] <TASK>
[629724.502174] __schedule+0x3cb/0xed0
[629724.502842] schedule+0x4e/0xb0
[629724.503447] btrfs_wait_on_delayed_iputs+0x7c/0xc0 [btrfs]
[629724.504534] ? prepare_to_wait_exclusive+0xc0/0xc0
[629724.505442] flush_space+0x423/0x630 [btrfs]
[629724.506296] ? rcu_read_unlock_trace_special+0x20/0x50
[629724.507259] ? lock_release+0x220/0x4a0
[629724.507932] ? btrfs_get_alloc_profile+0xb3/0x290 [btrfs]
[629724.508940] ? do_raw_spin_unlock+0x4b/0xa0
[629724.509688] btrfs_async_reclaim_metadata_space+0x139/0x320 [btrfs]
[629724.510922] process_one_work+0x252/0x5a0
[629724.511694] ? process_one_work+0x5a0/0x5a0
[629724.512508] worker_thread+0x52/0x3b0
[629724.513220] ? process_one_work+0x5a0/0x5a0
[629724.514021] kthread+0xf2/0x120
[629724.514627] ? kthread_complete_and_exit+0x20/0x20
[629724.515526] ret_from_fork+0x22/0x30
[629724.516236] </TASK>
[629724.516694] task:umount state:D stack: 0 pid:719055 ppid:695412 flags:0x00004000
[629724.518269] Call Trace:
[629724.518746] <TASK>
[629724.519160] __schedule+0x3cb/0xed0
[629724.519835] schedule+0x4e/0xb0
[629724.520467] schedule_timeout+0xed/0x130
[629724.521221] ? lock_release+0x220/0x4a0
[629724.521946] ? lock_acquired+0x19c/0x420
[629724.522662] ? trace_hardirqs_on+0x1b/0xe0
[629724.523411] __wait_for_common+0xaf/0x1f0
[629724.524189] ? usleep_range_state+0xb0/0xb0
[629724.524997] __flush_work+0x26d/0x530
[629724.525698] ? flush_workqueue_prep_pwqs+0x140/0x140
[629724.526580] ? lock_acquire+0x1a0/0x310
[629724.527324] __cancel_work_timer+0x137/0x1c0
[629724.528190] close_ctree+0xfd/0x531 [btrfs]
[629724.529000] ? evict_inodes+0x166/0x1c0
[629724.529510] generic_shutdown_super+0x74/0x120
[629724.530103] kill_anon_super+0x14/0x30
[629724.530611] btrfs_kill_super+0x12/0x20 [btrfs]
[629724.531246] deactivate_locked_super+0x31/0xa0
[629724.531817] cleanup_mnt+0x147/0x1c0
[629724.532319] task_work_run+0x5c/0xa0
[629724.532984] exit_to_user_mode_prepare+0x1a6/0x1b0
[629724.533598] syscall_exit_to_user_mode+0x16/0x40
[629724.534200] do_syscall_64+0x48/0x90
[629724.534667] entry_SYSCALL_64_after_hwframe+0x44/0xae
[629724.535318] RIP: 0033:0x7fa2b90437a7
[629724.535804] RSP: 002b:00007ffe0b7e4458 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[629724.536912] RAX: 0000000000000000 RBX: 00007fa2b9182264 RCX: 00007fa2b90437a7
[629724.538156] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000555d6cf20dd0
[629724.539053] RBP: 0000555d6cf20ba0 R08: 0000000000000000 R09: 00007ffe0b7e3200
[629724.539956] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[629724.540883] R13: 0000555d6cf20dd0 R14: 0000555d6cf20cb0 R15: 0000000000000000
[629724.541796] </TASK>
This happens because:
1) Before entering close_ctree() we have the async block group reclaim
task running and relocating a data block group;
2) There's an async metadata (or data) space reclaim task running;
3) We enter close_ctree() and park the cleaner kthread;
4) The async space reclaim task is at flush_space() and runs all the
existing delayed iputs;
5) Before the async space reclaim task calls
btrfs_wait_on_delayed_iputs(), the block group reclaim task which is
doing the data block group relocation, creates a delayed iput at
replace_file_extents() (called when COWing leaves that have file extent
items pointing to relocated data exten
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
scsi: ibmvfc: Allocate/free queue resource only during probe/remove
Currently, the sub-queues and event pool resources are allocated/freed for
every CRQ connection event such as reset and LPM. This exposes the driver
to a couple issues. First the inefficiency of freeing and reallocating
memory that can simply be resued after being sanitized. Further, a system
under memory pressue runs the risk of allocation failures that could result
in a crippled driver. Finally, there is a race window where command
submission/compeletion can try to pull/return elements from/to an event
pool that is being deleted or already has been deleted due to the lack of
host state around freeing/allocating resources. The following is an example
of list corruption following a live partition migration (LPM):
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in: vfat fat isofs cdrom ext4 mbcache jbd2 nft_counter nft_compat nf_tables nfnetlink rpadlpar_io rpaphp xsk_diag nfsv3 nfs_acl nfs lockd grace fscache netfs rfkill bonding tls sunrpc pseries_rng drm drm_panel_orientation_quirks xfs libcrc32c dm_service_time sd_mod t10_pi sg ibmvfc scsi_transport_fc ibmveth vmx_crypto dm_multipath dm_mirror dm_region_hash dm_log dm_mod ipmi_devintf ipmi_msghandler fuse
CPU: 0 PID: 2108 Comm: ibmvfc_0 Kdump: loaded Not tainted 5.14.0-70.9.1.el9_0.ppc64le #1
NIP: c0000000007c4bb0 LR: c0000000007c4bac CTR: 00000000005b9a10
REGS: c00000025c10b760 TRAP: 0700 Not tainted (5.14.0-70.9.1.el9_0.ppc64le)
MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 2800028f XER: 0000000f
CFAR: c0000000001f55bc IRQMASK: 0
GPR00: c0000000007c4bac c00000025c10ba00 c000000002a47c00 000000000000004e
GPR04: c0000031e3006f88 c0000031e308bd00 c00000025c10b768 0000000000000027
GPR08: 0000000000000000 c0000031e3009dc0 00000031e0eb0000 0000000000000000
GPR12: c0000031e2ffffa8 c000000002dd0000 c000000000187108 c00000020fcee2c0
GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000000000000 0000000000000000 0000000000000000 c008000002f81300
GPR24: 5deadbeef0000100 5deadbeef0000122 c000000263ba6910 c00000024cc88000
GPR28: 000000000000003c c0000002430a0000 c0000002430ac300 000000000000c300
NIP [c0000000007c4bb0] __list_del_entry_valid+0x90/0x100
LR [c0000000007c4bac] __list_del_entry_valid+0x8c/0x100
Call Trace:
[c00000025c10ba00] [c0000000007c4bac] __list_del_entry_valid+0x8c/0x100 (unreliable)
[c00000025c10ba60] [c008000002f42284] ibmvfc_free_queue+0xec/0x210 [ibmvfc]
[c00000025c10bb10] [c008000002f4246c] ibmvfc_deregister_scsi_channel+0xc4/0x160 [ibmvfc]
[c00000025c10bba0] [c008000002f42580] ibmvfc_release_sub_crqs+0x78/0x130 [ibmvfc]
[c00000025c10bc20] [c008000002f4f6cc] ibmvfc_do_work+0x5c4/0xc70 [ibmvfc]
[c00000025c10bce0] [c008000002f4fdec] ibmvfc_work+0x74/0x1e8 [ibmvfc]
[c00000025c10bda0] [c0000000001872b8] kthread+0x1b8/0x1c0
[c00000025c10be10] [c00000000000cd64] ret_from_kernel_thread+0x5c/0x64
Instruction dump:
40820034 38600001 38210060 4e800020 7c0802a6 7c641b78 3c62fe7a 7d254b78
3863b590 f8010070 4ba309cd 60000000 <0fe00000> 7c0802a6 3c62fe7a 3863b640
---[ end trace 11a2b65a92f8b66c ]---
ibmvfc 30000003: Send warning. Receive queue closed, will retry.
Add registration/deregistration helpers that are called instead during
connection resets to sanitize and reconfigure the queues.
In the Linux kernel, the following vulnerability has been resolved:
filemap: Handle sibling entries in filemap_get_read_batch()
If a read races with an invalidation followed by another read, it is
possible for a folio to be replaced with a higher-order folio. If that
happens, we'll see a sibling entry for the new folio in the next iteration
of the loop. This manifests as a NULL pointer dereference while holding
the RCU read lock.
Handle this by simply returning. The next call will find the new folio
and handle it correctly. The other ways of handling this rare race are
more complex and it's just not worth it.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: use get_random_u32 instead of prandom
bh might occur while updating per-cpu rnd_state from user context,
ie. local_out path.
BUG: using smp_processor_id() in preemptible [00000000] code: nginx/2725
caller is nft_ng_random_eval+0x24/0x54 [nft_numgen]
Call Trace:
check_preemption_disabled+0xde/0xe0
nft_ng_random_eval+0x24/0x54 [nft_numgen]
Use the random driver instead, this also avoids need for local prandom
state. Moreover, prandom now uses the random driver since d4150779e60f
("random32: use real rng for non-deterministic randomness").
Based on earlier patch from Pablo Neira.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix request_sock leak in sk lookup helpers
A customer reported a request_socket leak in a Calico cloud environment. We
found that a BPF program was doing a socket lookup with takes a refcnt on
the socket and that it was finding the request_socket but returning the parent
LISTEN socket via sk_to_full_sk() without decrementing the child request socket
1st, resulting in request_sock slab object leak. This patch retains the
existing behaviour of returning full socks to the caller but it also decrements
the child request_socket if one is present before doing so to prevent the leak.
Thanks to Curtis Taylor for all the help in diagnosing and testing this. And
thanks to Antoine Tenart for the reproducer and patch input.
v2 of this patch contains, refactor as per Daniel Borkmann's suggestions to
validate RCU flags on the listen socket so that it balances with bpf_sk_release()
and update comments as per Martin KaFai Lau's suggestion. One small change to
Daniels suggestion, put "sk = sk2" under "if (sk2 != sk)" to avoid an extra
instruction.
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/mdp4: Fix refcount leak in mdp4_modeset_init_intf
of_graph_get_remote_node() returns remote device node pointer with
refcount incremented, we should use of_node_put() on it
when not need anymore.
Add missing of_node_put() to avoid refcount leak.
Patchwork: https://patchwork.freedesktop.org/patch/488473/
In the Linux kernel, the following vulnerability has been resolved:
net: phy: at803x: fix NULL pointer dereference on AR9331 PHY
Latest kernel will explode on the PHY interrupt config, since it depends
now on allocated priv. So, run probe to allocate priv to fix it.
ar9331_switch ethernet.1:10 lan0 (uninitialized): PHY [!ahb!ethernet@1a000000!mdio!switch@10:00] driver [Qualcomm Atheros AR9331 built-in PHY] (irq=13)
CPU 0 Unable to handle kernel paging request at virtual address 0000000a, epc == 8050e8a8, ra == 80504b34
...
Call Trace:
[<8050e8a8>] at803x_config_intr+0x5c/0xd0
[<80504b34>] phy_request_interrupt+0xa8/0xd0
[<8050289c>] phylink_bringup_phy+0x2d8/0x3ac
[<80502b68>] phylink_fwnode_phy_connect+0x118/0x130
[<8074d8ec>] dsa_slave_create+0x270/0x420
[<80743b04>] dsa_port_setup+0x12c/0x148
[<8074580c>] dsa_register_switch+0xaf0/0xcc0
[<80511344>] ar9331_sw_probe+0x370/0x388
[<8050cb78>] mdio_probe+0x44/0x70
[<804df300>] really_probe+0x200/0x424
[<804df7b4>] __driver_probe_device+0x290/0x298
[<804df810>] driver_probe_device+0x54/0xe4
[<804dfd50>] __device_attach_driver+0xe4/0x130
[<804dcb00>] bus_for_each_drv+0xb4/0xd8
[<804dfac4>] __device_attach+0x104/0x1a4
[<804ddd24>] bus_probe_device+0x48/0xc4
[<804deb44>] deferred_probe_work_func+0xf0/0x10c
[<800a0ffc>] process_one_work+0x314/0x4d4
[<800a17fc>] worker_thread+0x2a4/0x354
[<800a9a54>] kthread+0x134/0x13c
[<8006306c>] ret_from_kernel_thread+0x14/0x1c
Same Issue would affect some other PHYs (QCA8081, QCA9561), so fix it
too.
In the Linux kernel, the following vulnerability has been resolved:
afs: Fix dynamic root getattr
The recent patch to make afs_getattr consult the server didn't account
for the pseudo-inodes employed by the dynamic root-type afs superblock
not having a volume or a server to access, and thus an oops occurs if
such a directory is stat'd.
Fix this by checking to see if the vnode->volume pointer actually points
anywhere before following it in afs_getattr().
This can be tested by stat'ing a directory in /afs. It may be
sufficient just to do "ls /afs" and the oops looks something like:
BUG: kernel NULL pointer dereference, address: 0000000000000020
...
RIP: 0010:afs_getattr+0x8b/0x14b
...
Call Trace:
<TASK>
vfs_statx+0x79/0xf5
vfs_fstatat+0x49/0x62
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: uvc: fix list double add in uvcg_video_pump
A panic can occur if the endpoint becomes disabled and the
uvcg_video_pump adds the request back to the req_free list after it has
already been queued to the endpoint. The endpoint complete will add the
request back to the req_free list. Invalidate the local request handle
once it's been queued.
<6>[ 246.796704][T13726] configfs-gadget gadget: uvc: uvc_function_set_alt(1, 0)
<3>[ 246.797078][ T26] list_add double add: new=ffffff878bee5c40, prev=ffffff878bee5c40, next=ffffff878b0f0a90.
<6>[ 246.797213][ T26] ------------[ cut here ]------------
<2>[ 246.797224][ T26] kernel BUG at lib/list_debug.c:31!
<6>[ 246.807073][ T26] Call trace:
<6>[ 246.807180][ T26] uvcg_video_pump+0x364/0x38c
<6>[ 246.807366][ T26] process_one_work+0x2a4/0x544
<6>[ 246.807394][ T26] worker_thread+0x350/0x784
<6>[ 246.807442][ T26] kthread+0x2ac/0x320
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: aspeed: Fix refcount leak in aspeed_adc_set_trim_data
of_find_node_by_name() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: adi-axi-adc: Fix refcount leak in adi_axi_adc_attach_client
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
xtensa: Fix refcount leak bug in time.c
In calibrate_ccount(), of_find_compatible_node() will return a node
pointer with refcount incremented. We should use of_node_put() when
it is not used anymore.
In the Linux kernel, the following vulnerability has been resolved:
xtensa: xtfpga: Fix refcount leak bug in setup
In machine_setup(), of_find_compatible_node() will return a node
pointer with refcount incremented. We should use of_node_put() when
it is not used anymore.
In the Linux kernel, the following vulnerability has been resolved:
ARM: exynos: Fix refcount leak in exynos_map_pmu
of_find_matching_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
of_node_put() checks null pointer.
In the Linux kernel, the following vulnerability has been resolved:
ARM: Fix refcount leak in axxia_boot_secondary
of_find_compatible_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
soc: bcm: brcmstb: pm: pm-arm: Fix refcount leak in brcmstb_pm_probe
of_find_matching_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In brcmstb_init_sram, it pass dn to of_address_to_resource(),
of_address_to_resource() will call of_find_device_by_node() to take
reference, so we should release the reference returned by
of_find_matching_node().
In the Linux kernel, the following vulnerability has been resolved:
ARM: cns3xxx: Fix refcount leak in cns3xxx_init
of_find_compatible_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
memory: samsung: exynos5422-dmc: Fix refcount leak in of_get_dram_timings
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
This function doesn't call of_node_put() in some error paths.
To unify the structure, Add put_node label and goto it on errors.
In the Linux kernel, the following vulnerability has been resolved:
tick/nohz: unexport __init-annotated tick_nohz_full_setup()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it had been broken for a decade.
Commit 28438794aba4 ("modpost: fix section mismatch check for exported
init/exit sections") fixed it so modpost started to warn it again, then
this showed up:
MODPOST vmlinux.symvers
WARNING: modpost: vmlinux.o(___ksymtab_gpl+tick_nohz_full_setup+0x0): Section mismatch in reference from the variable __ksymtab_tick_nohz_full_setup to the function .init.text:tick_nohz_full_setup()
The symbol tick_nohz_full_setup is exported and annotated __init
Fix this by removing the __init annotation of tick_nohz_full_setup or drop the export.
Drop the export because tick_nohz_full_setup() is only called from the
built-in code in kernel/sched/isolation.c.
In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix accesses beyond end of raid member array
On dm-raid table load (using raid_ctr), dm-raid allocates an array
rs->devs[rs->raid_disks] for the raid device members. rs->raid_disks
is defined by the number of raid metadata and image tupples passed
into the target's constructor.
In the case of RAID layout changes being requested, that number can be
different from the current number of members for existing raid sets as
defined in their superblocks. Example RAID layout changes include:
- raid1 legs being added/removed
- raid4/5/6/10 number of stripes changed (stripe reshaping)
- takeover to higher raid level (e.g. raid5 -> raid6)
When accessing array members, rs->raid_disks must be used in control
loops instead of the potentially larger value in rs->md.raid_disks.
Otherwise it will cause memory access beyond the end of the rs->devs
array.
Fix this by changing code that is prone to out-of-bounds access.
Also fix validate_raid_redundancy() to validate all devices that are
added. Also, use braces to help clean up raid_iterate_devices().
The out-of-bounds memory accesses was discovered using KASAN.
This commit was verified to pass all LVM2 RAID tests (with KASAN
enabled).
In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix KASAN warning in raid5_add_disks
There's a KASAN warning in raid5_add_disk when running the LVM testsuite.
The warning happens in the test
lvconvert-raid-reshape-linear_to_raid6-single-type.sh. We fix the warning
by verifying that rdev->saved_raid_disk is within limits.
In the Linux kernel, the following vulnerability has been resolved:
net: tun: unlink NAPI from device on destruction
Syzbot found a race between tun file and device destruction.
NAPIs live in struct tun_file which can get destroyed before
the netdev so we have to del them explicitly. The current
code is missing deleting the NAPI if the queue was detached
first.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/cm: Fix memory leak in ib_cm_insert_listen
cm_alloc_id_priv() allocates resource for the cm_id_priv. When
cm_init_listen() fails it doesn't free it, leading to memory leak.
Add the missing error unwind.
In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: exynos-ppmu: Fix refcount leak in of_get_devfreq_events
of_get_child_by_name() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done.
This function only calls of_node_put() in normal path,
missing it in error paths.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/memhotplug: Add add_pages override for PPC
With commit ffa0b64e3be5 ("powerpc: Fix virt_addr_valid() for 64-bit Book3E & 32-bit")
the kernel now validate the addr against high_memory value. This results
in the below BUG_ON with dax pfns.
[ 635.798741][T26531] kernel BUG at mm/page_alloc.c:5521!
1:mon> e
cpu 0x1: Vector: 700 (Program Check) at [c000000007287630]
pc: c00000000055ed48: free_pages.part.0+0x48/0x110
lr: c00000000053ca70: tlb_finish_mmu+0x80/0xd0
sp: c0000000072878d0
msr: 800000000282b033
current = 0xc00000000afabe00
paca = 0xc00000037ffff300 irqmask: 0x03 irq_happened: 0x05
pid = 26531, comm = 50-landscape-sy
kernel BUG at :5521!
Linux version 5.19.0-rc3-14659-g4ec05be7c2e1 (kvaneesh@ltc-boston8) (gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0, GNU ld (GNU Binutils for Ubuntu) 2.34) #625 SMP Thu Jun 23 00:35:43 CDT 2022
1:mon> t
[link register ] c00000000053ca70 tlb_finish_mmu+0x80/0xd0
[c0000000072878d0] c00000000053ca54 tlb_finish_mmu+0x64/0xd0 (unreliable)
[c000000007287900] c000000000539424 exit_mmap+0xe4/0x2a0
[c0000000072879e0] c00000000019fc1c mmput+0xcc/0x210
[c000000007287a20] c000000000629230 begin_new_exec+0x5e0/0xf40
[c000000007287ae0] c00000000070b3cc load_elf_binary+0x3ac/0x1e00
[c000000007287c10] c000000000627af0 bprm_execve+0x3b0/0xaf0
[c000000007287cd0] c000000000628414 do_execveat_common.isra.0+0x1e4/0x310
[c000000007287d80] c00000000062858c sys_execve+0x4c/0x60
[c000000007287db0] c00000000002c1b0 system_call_exception+0x160/0x2c0
[c000000007287e10] c00000000000c53c system_call_common+0xec/0x250
The fix is to make sure we update high_memory on memory hotplug.
This is similar to what x86 does in commit 3072e413e305 ("mm/memory_hotplug: introduce add_pages")
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: thinkpad_acpi: Fix a memory leak of EFCH MMIO resource
Unlike release_mem_region(), a call to release_resource() does not
free the resource, so it has to be freed explicitly to avoid a memory
leak.
In the Linux kernel, the following vulnerability has been resolved:
tipc: move bc link creation back to tipc_node_create
Shuang Li reported a NULL pointer dereference crash:
[] BUG: kernel NULL pointer dereference, address: 0000000000000068
[] RIP: 0010:tipc_link_is_up+0x5/0x10 [tipc]
[] Call Trace:
[] <IRQ>
[] tipc_bcast_rcv+0xa2/0x190 [tipc]
[] tipc_node_bc_rcv+0x8b/0x200 [tipc]
[] tipc_rcv+0x3af/0x5b0 [tipc]
[] tipc_udp_recv+0xc7/0x1e0 [tipc]
It was caused by the 'l' passed into tipc_bcast_rcv() is NULL. When it
creates a node in tipc_node_check_dest(), after inserting the new node
into hashtable in tipc_node_create(), it creates the bc link. However,
there is a gap between this insert and bc link creation, a bc packet
may come in and get the node from the hashtable then try to dereference
its bc link, which is NULL.
This patch is to fix it by moving the bc link creation before inserting
into the hashtable.
Note that for a preliminary node becoming "real", the bc link creation
should also be called before it's rehashed, as we don't create it for
preliminary nodes.
In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_open/close(): fix memory leak
The gs_usb driver appears to suffer from a malady common to many USB
CAN adapter drivers in that it performs usb_alloc_coherent() to
allocate a number of USB request blocks (URBs) for RX, and then later
relies on usb_kill_anchored_urbs() to free them, but this doesn't
actually free them. As a result, this may be leaking DMA memory that's
been used by the driver.
This commit is an adaptation of the techniques found in the esd_usb2
driver where a similar design pattern led to a memory leak. It
explicitly frees the RX URBs and their DMA memory via a call to
usb_free_coherent(). Since the RX URBs were allocated in the
gs_can_open(), we remove them in gs_can_close() rather than in the
disconnect function as was done in esd_usb2.
For more information, see the 928150fad41b ("can: esd_usb2: fix memory
leak").